Basal Ganglia

  • Hans J. ten DonkelaarEmail author
  • Bart van de Warrenburg
  • Michèl Willemsen
  • Benno Küsters
  • Yoshio Hashizume
  • Akira Hori


The basal ganglia are a group of closely connected cell masses, forming a more or less continuum, extending from the telencephalon to the midbrain tegmentum (Sect. 11.3). A few notes on the development of the basal ganglia are presented in Sect. 11.2. This complex comprises the striatum (the nucleus caudatus and the putamen, largely separated by the internal capsule), the globus pallidus, the subthalamic nucleus and the substantia nigra. The output of the basal ganglia is aimed at the ventral anterior (VA) and ventrolateral (VL) thalamic nuclei or VA-VL complex, the centromedian thalamic nucleus, the habenula, the pedunculopontine tegmental nucleus and the superior colliculus. In most non-primate mammals, the caudate and putamen are not clearly separated by an internal capsule and are known as the caudate-putamen complex or striatum. In primates, the globus pallidus consists of external or lateral and internal or medial segments. In other mammals, the entopeduncular nucleus is the homologue of the internal segment. The caudate nucleus, the putamen and the globus pallidus form the dorsal part of the striatal complex. The nucleus accumbens and the olfactory tubercle form the ventral striatum. The rostral part of the substantia innominata forms a ventral extension of the globus pallidus and is known as the ventral pallidum.

The cerebral cortex has extensive connections with the striatum that, via the globus pallidus and ventral thalamic nuclei, projects back to the motor, premotor and prefrontal areas of the cortex. Sensorimotor, association and limbic cortical areas project in a segregated tripartite manner onto the striatum and give rise to cortico-striato-pallido-thalamocortical circuits or re-entrant loops (Sect. 11.4). The putamen processes motor information in particular, the caudate nucleus cognitive information and the nucleus accumbens emotional and motivational information. The Albin-DeLong model of basal ganglia circuitry involves direct and indirect pathways, the first to facilitate or induce movements and the second to “brake” movements. Though challenged by the increasing complexity brought about by anatomical, physiological and clinical observations, this model still serves as a basis to explain pathophysiological mechanisms underlying motor disorders (Sect. 11.5). Many diseases of the basal ganglia have some disorder of movement as their primary symptom, ranging from an excess of (abnormal) involuntary movements such as in chorea to a poverty and slowness of movement as in Parkinson disease and Parkinson-plus disorders as illustrated in several Clinical cases (Sect. 11.6). The English terms of the Terminologia Neuroanatomica are used throughout.


  1. Adams RD, van Bogaert L, van der Eecken H (1961) Dégénérescences nigro-striées et cérébello-nigro-striées (Unicité clinique et variabilité pathologique des dégénérescences préséniles à forme de rigidité extrapyramidale). Psychiatr Neurol (Basel) 142:219–259Google Scholar
  2. Agari T, Date I (2015) Stimulation of the subthalamic nucleus for Parkinson’s disease. In: Itakura T (ed) Deep brain stimulation for neurological disorders: theoretical background and clinical applications. Springer, Cham-Heidelberg-Dordrecht-London-New YorkGoogle Scholar
  3. Agid Y, Blin J (1987) Nerve cell death in degenerative diseases of the central nervous system: Clinical aspects. Ciba Found Symp 126:3–29PubMedGoogle Scholar
  4. Agid Y, Javoy-Agid F, Ruberg M (1987) Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 166–230Google Scholar
  5. Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131:460–472PubMedGoogle Scholar
  6. Albers DS, Augood SJ (2001) New insights into progressive supranuclear palsy. Trends Neurosci 24:347–362PubMedGoogle Scholar
  7. Albin RL, Mink JW (2006) Research advances in Tourette syndrome research. Trends Neurosci 29:175–182PubMedGoogle Scholar
  8. Albin RL, Young AR, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedGoogle Scholar
  9. Albin RL, Reiner A, Anderson KD, Penney JB, Young AB (1990) Striatal and nigral neuron subpopulations in rigid Huntington’s disease: Implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol 27:357–365PubMedGoogle Scholar
  10. Alegret M, Junque C, Valldeoriola F, Vendrell P, Marti MJ, Tolosa E (2001) Obsessive-compulsive symptoms in Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:394–396PubMedPubMedCentralGoogle Scholar
  11. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neurosci 13:266–271PubMedGoogle Scholar
  12. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedGoogle Scholar
  13. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedGoogle Scholar
  14. Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 483–582Google Scholar
  15. Andén NE, Carlsson A, Dahlström A, Fuxe K, Hillarp N-Å, Larsson K (1964) Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530Google Scholar
  16. Andén NE, Dahlström A, Fuxe K, Larsson K, Olson L, Ungerstedt U (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326Google Scholar
  17. Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage 37:694–705PubMedGoogle Scholar
  18. Aziz TZ, Peggs D, Sambrook MA, Crossman AR (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–291PubMedGoogle Scholar
  19. Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Seven cases. Neurology 35:949–956PubMedGoogle Scholar
  20. Baron MS, Vitek JL, Bakay RAE, Green J, Kaneoke Y, Hashimoto T et al (1996) Treatment of advanced Parkinson’s disease by GPi pallidotomy: 1 year pilot-study results. Ann Neurol 40:355–366PubMedGoogle Scholar
  21. Barthó P, Freund TF, Acsády L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014PubMedGoogle Scholar
  22. Barthó P, Slézia A, Varga V, Bokor H, Pinault D, Buzsáki G, Acsády L (2007) Cortical control of zona incerta. J Neurosci 27:1670–1681PubMedPubMedCentralGoogle Scholar
  23. Bäumer T, Demiralay C, Hidding U, Bikmulina R, Helmich RC, Wunderlich S et al (2007) Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer’s cramp. Mov Disord 22:81–90PubMedGoogle Scholar
  24. Beach TG, McGeer EG (1984) The distribution of substance P in the primate basal ganglia: An immunohistochemical study of baboon and human brain. Neuroscience 13:29–52PubMedGoogle Scholar
  25. Beal MF, Ellison DW, Mazurek MF, Swartz KJ, Malloy JR, Bird ED, Martin JB (1988) A detailed examination of substance P in pathologically graded cases of Huntington’s disease. J Neurol Sci 84:51–61PubMedGoogle Scholar
  26. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184PubMedGoogle Scholar
  27. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M et al (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406PubMedGoogle Scholar
  28. Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E et al (1996) Chronic electrical stimulation of the ventral intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203–214PubMedGoogle Scholar
  29. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81PubMedGoogle Scholar
  30. Berardelli A, Currà A, Fabbrini G, Gilio F, Manfredi M (2003) Pathophysiology of tics and Tourette syndrome. J Neurol 250:781–787PubMedGoogle Scholar
  31. Berendse HW, Booij J, Leenders KL (2007) Neuroimaging in movement disorders: PET and SPECT. In: Wolters EC, van Laar T, Berendse HW (eds) Parkinsonism and related disorders. VU University Press, Amsterdam, pp 505–521Google Scholar
  32. Berg D, Hochstrasser K (2006) Iron metabolism in Parkinsonian syndromes. Mov Disord 21:1299–1310PubMedGoogle Scholar
  33. Berg D, Roggendorf W, Schroder U, Klein R, Tatschner T, Benz P et al (2002) Echogenenicity of the substantia nigra: Association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 59:999–1005PubMedGoogle Scholar
  34. Berg D, Godau J, Walter U (2008) Transcranial sonography in movement disorders. Lancet Neurol 7:1044–1055PubMedGoogle Scholar
  35. Bergman H, Karmon B, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedGoogle Scholar
  36. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMedGoogle Scholar
  37. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. J Neurol Sci 20:415–455PubMedGoogle Scholar
  38. Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J et al (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768PubMedPubMedCentralGoogle Scholar
  39. Bhatia KP, Marsden CD (1994) The behavioral and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859–876PubMedGoogle Scholar
  40. Birkmayer W, Hornykiewicz O (1961) Der L-3,4-Dioxy-Phenylalanine (DOPA) Effekt in Parkinson-Akinesia. Wien Klin Wochenschr 73:787–788PubMedGoogle Scholar
  41. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: An update. Trends Neurosci 30:194–202PubMedGoogle Scholar
  42. Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80PubMedGoogle Scholar
  43. Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969PubMedGoogle Scholar
  44. Braak H, Braak E (1982) Neuronal types in the striatum of man. Cell Tissue Res 227:319–342PubMedGoogle Scholar
  45. Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82PubMedGoogle Scholar
  46. Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247:3–10Google Scholar
  47. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119PubMedGoogle Scholar
  48. Braak H, Del Tredici K (2015) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162PubMedGoogle Scholar
  49. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen Steur ENH, Bohl J (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol (Berl) 88:493–500Google Scholar
  50. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490PubMedGoogle Scholar
  51. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211Google Scholar
  52. Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, Standaert DG (2008) The pathophysiological basis of dystonia. Nat Neurosci Rev 9:222–234Google Scholar
  53. Brenneis C, Egger K, Scherfler C, Seppi K, Schocke M, Poewe W, Wenning GK (2007) Progression of brain atrophy in multiple system atrophy. A longitudinal VBM study. J Neurol 254:191–196PubMedGoogle Scholar
  54. Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nat Rev Neurosci 16:109–120PubMedPubMedCentralGoogle Scholar
  55. Brodkey JA, Tasker RR, Hamani C, McAndrews MP, Dostrovsky JO, Lozano AM (2004) Tremor cells in the human thalamus: Differences among neurologic disorders. J Neurosurg 101:43–47PubMedGoogle Scholar
  56. Brooks DJ (2000) PET studies and motor complications in Parkinson’s disease. Trends Neurosci 23(Suppl):S101–S108PubMedGoogle Scholar
  57. Brooks DJ, Salmon EP, Matthias CJ, Quinn N, Leenders KL, Bannister R et al (1990) The relationship between locomotor disability, autonomic dysfunction, and the integrity of the striatal dopaminergic system in patients with multiple system atrophy, pure autonomic failure, and Parkinson’s disease, studied with PET. Brain 113:1539–1552PubMedGoogle Scholar
  58. Bruyn GW (1973) Neuropathological changes in Huntington’s disease. Adv Neurol 1:399–403Google Scholar
  59. Bruyn GW, Bots GTAM, Dom R (1979) Huntington’s chorea: current neuropathological data. Adv Neurol 23:83–93Google Scholar
  60. Burns RS, Chiueh CC, Markey S, Ebert MH, Jacobowitz D, Kopin LJ (1983) A primate model of Parkinson’s disease: selective destruction of substantia nigra pars compacta dopaminergic neurons by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80:4546–4550PubMedPubMedCentralGoogle Scholar
  61. Carbon M, Kingsley PB, Su S, Smith GS, Spetsieris P, Bressman S, Eidelberg D (2004) Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann Neurol 56:263–286Google Scholar
  62. Carpenter MB (1981) Anatomy of the corpus striatum and brain stem integrating systems. In: Brooks VB (ed) Handbook of physiology, Sect 1: The nervous system, Motor Systems, vol II. American Physiological Society, Bethesda, pp 947–995Google Scholar
  63. Carpenter MB, McMasters RE (1964) Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am J Anat 114:293–320PubMedGoogle Scholar
  64. Carpenter MB, Whittier JR, Mettler FA (1950) Analysis of choreoid hyperkinesia in the rhesus monkey. Surgical and pharmacological analysis of hyperkinesia resulting from lesions of the subthalamic nucleus of Luys. J Comp Neurol 92:293–331PubMedGoogle Scholar
  65. Carpenter MB, Fraser RAR, Shriver JE (1968) The organization of the pallidosubthalamic fibers in the monkey. Brain Res 11:521–559Google Scholar
  66. Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224:1–29PubMedGoogle Scholar
  67. Ceballos-Baumann AO, Obeso JA, Vitek JL, DeLong MR, Bakay R, Linaasoro G, Brooks DJ (1994) Restoration of thalamocortical activity after posteroventrolateral pallidotomy in Parkinson’s disease. Lancet 344:8–14Google Scholar
  68. Cepeda C, Wu N, André VM, Cummings DM, Levine MS (2007) The corticostriatal pathway in Huntington’s disease. Prog Neurobiol 81:253–271PubMedGoogle Scholar
  69. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280PubMedGoogle Scholar
  70. Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705PubMedPubMedCentralGoogle Scholar
  71. Chiueh CC, Burns RS, Markey SP, Jacobowitz DM, Kopin IJ (1985) Primate model of Parkinsonism: Selective lesion of nigrostriatal neurons by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine produces an extrapyramidal syndrome in rhesus monkeys. Life Sci 36:213–218PubMedGoogle Scholar
  72. Cicchetti F, Prensa L, Wu Y, Parent A (2000) Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington’s disease. Brain Res Rev 34:80–101PubMedGoogle Scholar
  73. Conceiçāo VA, Dias A, Farinha AC, Maia TV (2017) Premonitory urges and ties in Tourette syndrome: Computational mechanisms and neural correlates. Curr Opin Neurobiol 46:187–199PubMedGoogle Scholar
  74. Cooper IS (1954) Surgical occlusion of the anterior choroidal artery in parkinsonism. Surg Gynecol Obstet 92:207–219Google Scholar
  75. Cooper IS, Bergman LL, Caracalos A (1963) Anatomic verification of the lesion which abolishes parkinsonian-tremor and rigidity. Neurology 13:779–787PubMedGoogle Scholar
  76. Cordato NJ, Halliday GM, Harding AJ, Hely MA, Morris JGL (2000) Regional brain atrophy in progressive supranuclear palsy and Lewy body disease. Ann Neurol 47:718–728PubMedGoogle Scholar
  77. Cordato NJ, Pantelis C, Halliday GM, Velakoulis D, Wood SJ, Stuart GW et al (2002) Frontal atrophy correlates with behavioural changes in progressive supranuclear palsy. Brain 125:789–800PubMedGoogle Scholar
  78. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. New Engl J Med 276:374–379PubMedGoogle Scholar
  79. Cowan WM, Powell TPS (1966) Striopallidal projection in the monkey. J Neurol Neurosurg Psychiatry 29:426–439PubMedPubMedCentralGoogle Scholar
  80. Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58:956–959PubMedGoogle Scholar
  81. Crittenden JR, Tillberg PW, Riad MH, Shima Y, Gerfen CR, Curry J et al (2016) Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc Natl Acad Sci U S A 113:11318–11323PubMedPubMedCentralGoogle Scholar
  82. Crossman AR (1987) Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21:1–40PubMedGoogle Scholar
  83. Cykowski MD, Coon EA, Powell SZ, Jenkins SM, Benarroch EE, Low PA et al (2015) Expanding the spectrum of neuronal pathology in multiple system atrophy. Brain 138:2293–2309PubMedPubMedCentralGoogle Scholar
  84. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55Google Scholar
  85. Dahlström A, Fuxe K (1965) Ibid. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64(Suppl 247):1–36Google Scholar
  86. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999a) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D28K immunohistochemistry. Brain 122:1421–1436PubMedGoogle Scholar
  87. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999b) Ibid. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448PubMedGoogle Scholar
  88. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254PubMedGoogle Scholar
  89. Dejerine J, Thomas AA (1900) L’atrophie olivo-ponto-cérébelleuse. Nouv Iconogr Salpêtr 13:330–370Google Scholar
  90. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMedGoogle Scholar
  91. DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brooks VB (ed) Handbook of physiology, Sect 1: The nervous system, Motor Systems, vol II. American Physiological Society, Bethesda, pp 1017–1061Google Scholar
  92. Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: A quantitative immunohistochemical study. J Chem Neuroanat 27:143–164PubMedGoogle Scholar
  93. Denny-Brown D, Yanagisawa N (1976) The role of the basal ganglia in the initiation of movements. In: Yahr MD (ed) The Basal Ganglia. Raven, New York, pp 115–148Google Scholar
  94. Deuschl G, Raethjen J (2007) Tremor. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, pp 417–433Google Scholar
  95. Deuschl G, Raethjen J, Baron R, Lindemann M, Wilms H, Krack P (2000) The pathophysiology of parkinsonian tremor: A review. J Neurol 247(Suppl 5):V33–V48PubMedGoogle Scholar
  96. DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 46:106–117Google Scholar
  97. Dickson DW (2001) α-Synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432PubMedGoogle Scholar
  98. Dickson DW (2004) Sporadic tauopathies: Pick’s disease, corticobasal degeneration, progressive supranuclear palsy and argyrophilic grain disease. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 227–256Google Scholar
  99. Dierssen G, Bergmann L, Gioino L, Cooper IS (1961) Hemiballism following surgery for Parkinson’s disease. Arch Neurol 5:627–637PubMedGoogle Scholar
  100. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C et al (1995) Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14:1075–1081PubMedGoogle Scholar
  101. Dogali M, Fazzini E, Kolodny E, Eidelberg D, Sterio D, Devinsky O, Beric A (1995) Stereotactic ventral pallidotomy for Parkinson’s disease. Neurology 45:753–761PubMedGoogle Scholar
  102. Doig NM, Bolam JP (2018) Microcircuits of the striatum. In: Shepherd GM, Grillner S (eds) Handbook of Brain Microcircuits, 2nd edn. Oxford University Press, Oxford, pp 121–131Google Scholar
  103. Draganski B, Thun-Hohenstein C, Bogdahn U, Winkler J, May A (2003) “Motor circuit” gray matter changes in idiopathic cervical dystonia. Neurology 61:1228–1231PubMedGoogle Scholar
  104. Dragunow M, Faull RLM, Lawlor P, Beilharz EJ, Singleton K, Walker EB, Mee E (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal cortex. Neuroreport 6:1053–1057PubMedGoogle Scholar
  105. Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15:5999–6013PubMedPubMedCentralGoogle Scholar
  106. Edinger L (1911) Vorlesungen über den Bau der nervösen Zentralorgane, vol I, 8th edn. Vogel, LeipzigGoogle Scholar
  107. Edwards MJ, Huang Y-Z, Mir P, Rothwell JC, Bhatia KP (2006) Abnormalities in motor cortical plasticity differentiate manifesting and non-manifesting DYT1 carriers. Mov Disord 21:2181–2186PubMedGoogle Scholar
  108. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38:1236–1239PubMedGoogle Scholar
  109. Elias S, Israel Z, Bergman H (2008) Physiology of Parkinson’s disease. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 25–36Google Scholar
  110. Esselink R (2007) Subthalamic nucleus stimulation in Parkinson’s disease. Radboud University Nijmegen, ThesisGoogle Scholar
  111. Fahn S (1988) Concept and classification of dystonia. Adv Neurol 50:1–8PubMedGoogle Scholar
  112. Falck B, Hillarp N-Å, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  113. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318PubMedGoogle Scholar
  114. Fearnley JM, Lees AJ (1990) Striatonigral degeneration. A clinicopathological study. Brain 113:1823–1842PubMedGoogle Scholar
  115. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 114:2283–2301PubMedGoogle Scholar
  116. Feekes JA, Cassell MD (2006) The vascular supply of the functional compartments of the human striatum. Brain 129:2189–2201Google Scholar
  117. Feekes JA, Hsu S-W, Chaloupka JC, Cassell MD (2005) Tertiary microvascular territories define lacunar infarcts in the basal ganglia. Ann Neurol 58:18–30Google Scholar
  118. Fernández-Alvarez E, Aicardi J (2001) Movement Disorders in Children. Mac Keith, LondonGoogle Scholar
  119. Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP (1987) Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 46:12–27PubMedGoogle Scholar
  120. Ferraro A (1925) Contributa sperimentale allo studio della substantia nigra normale e dei suoi rapporti con la corteccia cerebrale e con il corpo striato. Arch Gen Neurol Psichiatr 6:26–117Google Scholar
  121. Ferraro A (1928) The connections of the pars oculomotoria of the substantia nigra. Arch Neurol Psychiatry 19:177–180Google Scholar
  122. Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263PubMedGoogle Scholar
  123. Flames N, Pla R, Gelman DM, Rubinstein JL, Puelles L, Marín O (2007) Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcription codes. J Neurosci 27:9682–9695PubMedPubMedCentralGoogle Scholar
  124. Foix C (1921) Les lésions anatomiques de la maladie de Parkinson. Rev Neurol (Paris) 37:593–600Google Scholar
  125. Foix C, Nicolesco J (1925) Les noyaux gris centraux et la région mésencéphalo-sous-optique. Masson, ParisGoogle Scholar
  126. Forel A (1877) Untersuchungen über die Haubenregion and ihre Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch Psychiatr Nervenkr 7:393–495Google Scholar
  127. François C, Percheron G, Yelnik J, Heyner S (1984a) A Golgi analysis of the primate globus pallidus. I Inconstant processes of large neurons Other neuronal types Afferent axons. J Comp Neurol 227:182–199PubMedGoogle Scholar
  128. François C, Percheron G, Yelnik J (1984b) Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13:61–76PubMedGoogle Scholar
  129. François C, Percheron G, Yelnik J, Heyner S (1985) A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular correlates. Brain Res Bull 14:349–367PubMedGoogle Scholar
  130. François C, Yelnik J, Percheron G (1987) Golgi study of the primate substantia nigra. II Spatial organization of dendritic arborizations in relation to the cytoarchitectonic boundaries and to the striatonigral bundle. J Comp Neurol 265:473–493PubMedGoogle Scholar
  131. François C, Yelnik J, Percheron G, Tandé D (1994a) Calbindin D-28k as a marker for the associative cortical territory of the striatum in macaques. Brain Res 633:331–336PubMedGoogle Scholar
  132. François C, Yelnik J, Percheron G, Fénelon G (1994b) Topographic distribution of the axonal endings from the sensorimotor and associative striatum in the macaque pallidum and substantia nigra. Exp Brain Res 102:305–318PubMedGoogle Scholar
  133. François C, Tandé D, Yelnik J, Hirsch E (2002) Distribution and morphology of nigral axons projecting to the thalamus in primates. J Comp Neurol 447:249–260PubMedGoogle Scholar
  134. French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in Parkinson’s disease. Front Aging Neurosci 10:99PubMedPubMedCentralGoogle Scholar
  135. Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson’s disease: A case for the selective vulnerability of the substantia nigra. Acta Neuropathol (Berl) 112:115–126Google Scholar
  136. Galvin JE, Lee VM-Y, Trojanowski JQ (2001) Synucleinopathies: Clinical and pathological implications. Arch Neurol 58:186–190PubMedGoogle Scholar
  137. Gaspar P, Berger B, Hamon M, Cesselin F, Vigny A, Javoy-Agid F, Agid Y (1983) Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon. J Neurol Sci 58:247–267PubMedGoogle Scholar
  138. Gebbink TB (1967) Structure and connections of the basal ganglia in man. Thesis, University of Leiden. Van Gorcum, AssenGoogle Scholar
  139. Gerfen CR, Wilson CJ (1996) The basal ganglia. Handb Chem Neuroanat 12:369–466Google Scholar
  140. German DC, Dubach M, Askari S, Speciale SG, Bowden DM (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian syndrome in Macaca fascicularis: Which midbrain dopaminergic neurons are lost? Neuroscience 24:161–174PubMedGoogle Scholar
  141. Giasson BI, Lee VM-Y, Trojanowski JQ (2004) Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy and the spectrum of diseases with α-synuclein inclusions. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 353–375Google Scholar
  142. Gibb WRG, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396PubMedPubMedCentralGoogle Scholar
  143. Gibb WRG, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112:1171–1192PubMedGoogle Scholar
  144. Gibb WRG, Luthert PJ, Marsden CD (1990) Clinical and pathological features of corticobasal degeneration. Adv Neurol 53:51–54PubMedGoogle Scholar
  145. Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820PubMedGoogle Scholar
  146. Gilles de la Tourette C (1885) Étude sur une affection nerveuse characterisée par de l’incoordination motrice accompagnée d’echolalie et de coprolalie. Arch Neurol (Paris) 9:19–42Google Scholar
  147. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98PubMedGoogle Scholar
  148. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676PubMedPubMedCentralGoogle Scholar
  149. Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34:111–126PubMedGoogle Scholar
  150. Giménez-Amaya JM, Graybiel AM (1991) Modular organization of projection neurons in the matrix compartment of the primate striatum. J Neurosci 11:779–791PubMedPubMedCentralGoogle Scholar
  151. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210PubMedGoogle Scholar
  152. Goldman PS, Nauta WJH (1977) An intricately patterned prefrontocaudate projection in the rhesus monkey. J Comp Neurol 171:369–386Google Scholar
  153. Goldman-Rakic PS (1981) Prenatal formation of cortical input and development of cytoarchitectonic compartments in the neostriatum of the rhesus monkey. J Neurosci 1:721–735PubMedPubMedCentralGoogle Scholar
  154. Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum: Subdivision into island and matrix cellular compartments. J Comp Neurol 205:398–413PubMedGoogle Scholar
  155. Grabli D, Karachi C, Folgoas E, Montfort M, Tandé D, Clark S et al (2013) Gait disorders in parkinsonian monkeys with pedunculopontine lesions: A tale of two systems. J Neurosci 33:11986–11993PubMedPubMedCentralGoogle Scholar
  156. Grafe MR, Forno LS, Eng LF (1985) Immunocytochemical studies of substance P and Met-enkephalin in the basal ganglia and substantia nigra in Huntington’s, Parkinson’s and Alzheimer diseases. J Neuropathol Exp Neurol 44:47–69PubMedGoogle Scholar
  157. Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34PubMedPubMedCentralGoogle Scholar
  158. Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: Neurons and afferent fibers. J Comp Neurol 234:317–333PubMedGoogle Scholar
  159. Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187PubMedGoogle Scholar
  160. Graybiel AM (1986) Neuropeptides in the basal ganglia. In: Martin JD, Barchas JD (eds) Neuropeptides in Neurologic and Psychiatric Disease. Raven, New York, pp 135–161Google Scholar
  161. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedGoogle Scholar
  162. Graybiel AM (2018) Templates for neural dynamics in the striatum: Striosomes and matrisomes. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 133–141Google Scholar
  163. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat, demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726PubMedPubMedCentralGoogle Scholar
  164. Graybiel AM, Rauch SL (2000) Toward a neurobiology of obsessive-compulsive disorder. Neuron 28:343–347PubMedGoogle Scholar
  165. Graybiel AM, Pickel VM, Joh TH, Reis DJ, Ragsdale CW Jr (1981) Direct demonstration of correspondence between the dopamine islands and acetylcholinesterase patches in the developing striatum. Proc Natl Acad Sci U S A 78:5871–5875PubMedPubMedCentralGoogle Scholar
  166. Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: A new hypothesis. Trends Neurosci 23(Suppl):S71–S77PubMedGoogle Scholar
  167. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs in roles for the striatum and pallidum. Trends Neurosci 28:364–370PubMedGoogle Scholar
  168. Guridi J, Obeso JA (2001) The subthalamic nucleus, hemiballismus and Parkinson’s disease: Reappraisal of a neurosurgical dogma. Brain 124:5–19PubMedGoogle Scholar
  169. Guridi J, Herrero MT, Luquin R, Guillen J, Obeso JA (1994) Subthalamotomy improves MPTP-induced parkinsonism in monkeys. Stereotact Funct Neurosurg 62:98–102PubMedGoogle Scholar
  170. Gutekunst C-A, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D et al (1999) Nuclear and neuropil aggregates in Huntington’s disease: Relationship to neuropathology. J Neurosci 19:2522–2534PubMedPubMedCentralGoogle Scholar
  171. Haaxma R, van Boxtel A, Brouwer WH, Goeken LNH, Denier van der Gon JJ, Colebatch J et al (1995) Motor function in a patient with bilateral lesions of the globus pallidus. Mov Disord 10:761–777PubMedGoogle Scholar
  172. Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: Integrative circuitry and function. Crit Rev Neurobiol 11:323–342PubMedGoogle Scholar
  173. Haber SN, Gdowski MJ (2004) Basal ganglia. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 676–738Google Scholar
  174. Haber SN, Groenewegen HJ (1989) Interrelationship of the distribution of neuropeptides and tyrosine hydroxylase immunoreactivity in the human substantia nigra. J Comp Neurol 290:53–68PubMedGoogle Scholar
  175. Haber SN, Lynd C, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study. J Comp Neurol 293:282–298PubMedGoogle Scholar
  176. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15:4851–4867PubMedPubMedCentralGoogle Scholar
  177. Hallett M (2006) The neurophysiology of dystonia. Arch Neurol 55:601–603Google Scholar
  178. Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252:423–445PubMedGoogle Scholar
  179. Halliday GM, Li YW, Blumbergs PC, Joh TH, Corton RGH, Howe PRC et al (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27:373–385PubMedGoogle Scholar
  180. Halliday GM, Macdonald V, Henderson JM (2005) A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson’s disease. Brain 128:2272–2280PubMedGoogle Scholar
  181. Halliday GM, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol (Berl) 115:409–415Google Scholar
  182. Halliday G, McCann H, Shepherd C (2012) Evaluation of the Braak hypothesis: How far can it explain the pathogenesis of Parkinson’s disease? Expert Rev Neurother 12:673–686PubMedGoogle Scholar
  183. Hamada I, DeLong MR (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J Neurophysiol 68:1859–1966PubMedGoogle Scholar
  184. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20PubMedGoogle Scholar
  185. Hamani C, Dostrovsky JO, Lozano AM (2006) The motor thalamus in neurosurgery. Neurosurgery 58:146–158PubMedGoogle Scholar
  186. Hamani C, Aziz T, Bloem BR, Brown P, Chabardes S, Coyne T et al (2016a) Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: Surgical anatomy and terminology. Stereotact Funct Neurosurg 94:298–306PubMedPubMedCentralGoogle Scholar
  187. Hamani C, Lozano AM, Mazzone PA, Moro E, Hutchison W, Silburn PA et al (2016b) Pedunculopontine nucleus region deep brain stimulation in Parkinson disease: surgical techniques, side effects and postoperative imaging. Stereotact Funct Neurosurg 94:307–319PubMedPubMedCentralGoogle Scholar
  188. Hamani C, Florence G, Heinsen H, Plantinga BR, Temel Y et al (2017) Subthalamic nucleus deep brain stimulation: basic concepts and novel perspectives. eNeuro 0140-17:2017Google Scholar
  189. Hammond C, Féger J, Bioulac B, Souteyrand JP (1979) Experimental hemiballism in the monkey produced by unilateral kainic acid lesion in corpus Luysi. Brain Res 171:577–580PubMedGoogle Scholar
  190. Hanich A, Maloney FJ (1969) Localization of stereotaxic lesions in the treatment of parkinsonism: A clinicopathological comparison. J Neurosurg 31:393–399Google Scholar
  191. Hardman CD, Halliday GM (1999a) The external globus pallidus in patients with Parkinson’s disease and progressive supranuclear palsy. Mov Disord 14:626–633PubMedGoogle Scholar
  192. Hardman CD, Halliday GM (1999b) The internal globus pallidus is affected in progressive supranuclear palsy and Parkinson’s disease. Exp Neurol 158:135–142PubMedGoogle Scholar
  193. Hardman CD, McRitchie DA, Halliday GM, Cartwright HR, Morris JGL (1996) The substantia nigra pars reticulata in Parkinson’s disease. Neurodegeneration 5:49–55PubMedGoogle Scholar
  194. Hardman CD, Halliday GM, McRitchie DA, Cartwright HR, Morris JGL (1997a) Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Exp Neurol 144:183–192PubMedGoogle Scholar
  195. Hardman CD, Halliday GM, McRitchie DA, Morris JGL (1997b) The subthalamic nucleus in Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56:132–142PubMedGoogle Scholar
  196. Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: Volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255PubMedGoogle Scholar
  197. Hardy JA, Mann DMA, Webster P, Winblad B (1986) An integrative hypothesis concerning the pathogenesis and progression of Alzheimer’s disease. Neurobiol Aging 7:489–502PubMedGoogle Scholar
  198. Harper PS (ed) (1996) Huntington’s disease, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  199. Hartmann A, Worbe Y (2018) Tourette syndrome: Clinical spectrum, mechanisms and personalized treatments. Curr Opin Neurol 31:504–509PubMedGoogle Scholar
  200. Hartmann-von Monakow K, Akert K, Künzle H (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp Brain Res 33:395–403Google Scholar
  201. Hassler R (1937) Zur Normalanatomie der Substantia nigra. Versuch einer architektonischen Gliederung. J Psychol Neurol (Lpz) 48:1–55Google Scholar
  202. Hassler R (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol (Lpz) 48:387–476Google Scholar
  203. Hassler R (1959) Anatomy of the thalamus. In: Schaltenbrand G, Bailey P (eds) Introduction to Stereotaxis with an Atlas of the Human Brain. Thieme, Stuttgart, pp 230–290Google Scholar
  204. Hassler R, Riechert T (1954) Indikationen und Lokalisationsmethode der gezielten Hirnoperationen. Nervenarzt 25:441–447PubMedGoogle Scholar
  205. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KHL, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40PubMedGoogle Scholar
  206. Hazrati L-N, Parent A (1991) Projection from the external pallidum to the reticular nucleus in the squirrel monkey. Brain Res 550:142–146PubMedGoogle Scholar
  207. Hazrati L-N, Parent A (1992a) Projections from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey. Brain Res 585:267–271PubMedGoogle Scholar
  208. Hazrati L-N, Parent A (1992b) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227PubMedGoogle Scholar
  209. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595PubMedGoogle Scholar
  210. Heimer (1976) The olfactory cortex and the ventral striatum. In: Livingstone KE, Hornykiewicz O (eds) Limbic mechanisms: the continuing evolution of the limbic system concept. Plenum, New York, pp 95–187Google Scholar
  211. Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235PubMedGoogle Scholar
  212. Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87Google Scholar
  213. Heimer L, de Olmos J, Alheid GF, Záborsky L (1991) “Perestroika” in the basal forebrain: Opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedGoogle Scholar
  214. Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: A notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006PubMedGoogle Scholar
  215. Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000a) Degeneration of the thalamic caudal intralaminar nuclei in Parkinson’s disease. Ann Neurol 47:345–352PubMedGoogle Scholar
  216. Henderson JM, Carpenter K, Cartwright H, Halliday GM (2000b) Loss of thalamic intranuclear nuclei in progressive supranuclear palsy and Parkinson’s disease: Clinical and therapeutic implications. Brain 123:1410–1421PubMedGoogle Scholar
  217. Hikosaka O, Wurtz RH (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata. I Relation of visual and auditory responses to saccades. J Neurophysiol 49:1230–1253PubMedGoogle Scholar
  218. Hirai T, Jones EG (1989a) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34PubMedGoogle Scholar
  219. Hirai T, Jones EG (1989b) Distribution of tachykinin-immunoreactive fibers in the human thalamus. Brain Res Rev 14:35–52PubMedGoogle Scholar
  220. Hirsch EC, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348PubMedGoogle Scholar
  221. His W (1889) Die Formentwicklung des menschlichen Vorderhirns vom Ende des ersten bis zum Beginn des dritten Monats. Abh Kön Sächs Ges Wiss Math Phys Kl 15:675–735Google Scholar
  222. Hochstetter F (1919) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. I. Teil. Deuticke, ViennaGoogle Scholar
  223. Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–30PubMedGoogle Scholar
  224. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25PubMedGoogle Scholar
  225. Holton JL, Schneider SA, Ganesharajah T, Gandhi S, Strand C, Shashidharan P et al (2008) Neuropathology of primary adult-onset dystonia. Neurology 70:695–699PubMedGoogle Scholar
  226. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMedPubMedCentralGoogle Scholar
  227. Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259PubMedGoogle Scholar
  228. Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228PubMedGoogle Scholar
  229. Hornykiewicz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34Google Scholar
  230. Horstink MWIM (2007) Drug-induced and toxic parkinsonism. In: Wolters EC, van Laar T, Berendse HW (eds) Parkinsonism and related disorders. VU University Press, Amsterdam, pp 297–306Google Scholar
  231. Huntington GL (1872) On chorea. Medical and Surgical Reporter, Philadelphia, vol 26. pp 317–321Google Scholar
  232. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s diseases chromosome. Cell 72:971–983Google Scholar
  233. Huntsman RJ, Sinclair DB, Bhargava R, Chan A (2005) Atypical presentations of Leigh syndrome: A case series and review. Pediatr Neurol 32:334–340PubMedGoogle Scholar
  234. Hutchison WD, Lozano AM (2000) Microelectrode recordings in movement disorder surgery. In: Lozano AM (ed) Movement disorder surgery, Prog Neurol Surg, vol 15. Karger, Basel, pp 103–117Google Scholar
  235. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO, Lang AE, Lozano AM (1998) Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol 44:621–628Google Scholar
  236. Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236:315–330PubMedGoogle Scholar
  237. Ilinsky IA, Yi H, Kultas-Ilinsky K (1997) The mode of termination of pallidal afferents to the thalamus: A light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J Comp Neurol 386:601–612PubMedGoogle Scholar
  238. Isoda M, Hikosaka O (2008) Role for subthalamic nucleus in switching from autonomic to controlled eye movements. J Neurosci 28:7209–7218PubMedPubMedCentralGoogle Scholar
  239. Itakura T (ed) (2015) Deep brain stimulation for neurological disorders: theoretical background and clinical applications. Springer, Cham-Heidelberg-Dordrecht-London-New YorkGoogle Scholar
  240. Jayaraman A, Batton RR, Carpenter MB (1977) Nigrotectal projections in the monkey, an autoradiographic study. Brain Res 135:147–152PubMedGoogle Scholar
  241. Javoy-Agid F, Ruberg M, Taquer H, Bokobza B, Agid Y (1984) Biochemical neuropathology of Parkinson’s disease. Adv Neurol 40:189–197PubMedGoogle Scholar
  242. Jelgersma G (1931) Atlas anatomicum cerebri. Scheltema & Holkema, AmsterdamGoogle Scholar
  243. Jellinger KA (1971) Progressive supranuclear palsy (subcortical argyrophilic dystrophy). Acta Neuropathol (Berl) 19:347–352Google Scholar
  244. Jellinger KA (1986) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45:1–18Google Scholar
  245. Jellinger KA (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedPubMedCentralGoogle Scholar
  246. Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72PubMedGoogle Scholar
  247. Jellinger KA, Attems J (2006) Does striatal pathology distinguish Parkinson disease with dementia and dementia with Lewy bodies? Acta Neuropathol (Berl) 112:253–260Google Scholar
  248. Jellinger KA, Danielczyk W (1968) Striato-nigrale degeneration. Acta Neuropathol (Berl) 10:242–257Google Scholar
  249. Jimenez-Castellanos J, Graybiel AM (1989) Evidence that histochemically distinct zones of the primate substantia nigra pars compacta are related to patterned distributions of nigrostriatal projection neurons and striatonigral fibers. Exp Brain Res 74:227–238PubMedGoogle Scholar
  250. Jones EG, Coulter JD, Burton H, Porter R (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80PubMedGoogle Scholar
  251. Josephs KA, Katsuse O, Beccano-Kelly DA, Lin W-L, Uitti RJ, Fujino Y et al (2006) Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol 65:396–405PubMedGoogle Scholar
  252. Kalaitzakis ME, Grarber MB, Gentleman SM, Pearce RKB (2008) The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: A critical analysis of α-synuclein staging. Neuropathol Appl Neurobiol 34:284–295PubMedGoogle Scholar
  253. Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134Google Scholar
  254. Karachi C, Grabli D, Bernard FA, Tandé D, Wattiez N, Belaid H et al (2010) Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 120:2745–2754PubMedPubMedCentralGoogle Scholar
  255. Kawaguchi Y, Wilson CJ, Emson PC (1990) Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 10:3421–3438PubMedPubMedCentralGoogle Scholar
  256. Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: Use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459Google Scholar
  257. Kemp JM, Powell TPS (1970) The corticostriate projection in the monkey. Brain 93:525–546PubMedGoogle Scholar
  258. Kievit J, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey. Exp Brain Res 29:299–322PubMedGoogle Scholar
  259. Kim HF, Hikosaka O (2015) Parallel basal ganglia circuits for voluntary and autonomic behaviour to reach rewards. Brain 138:1776–1800PubMedPubMedCentralGoogle Scholar
  260. Kim R, Nakano K, Jayaraman A, Carpenter MB (1976) Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey. J Comp Neurol 169:263–289PubMedGoogle Scholar
  261. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: Pathophysiologic and clinical implications. New Engl J Med 218:876–880Google Scholar
  262. Kitt CA, Cork LC, Eidelberg F, Joh TH, Price DL (1986) Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A tyrosine hydroxylase immunocyto-chemical study in monkey. Neuroscience 17:1089–1103PubMedGoogle Scholar
  263. Kolmac CI, Power BD, Mitrofanis J (1998) Patterns of connections between zona incerta and brainstem in rats. J Comp Neurol 396:544–555PubMedGoogle Scholar
  264. Konagaya M, Sakai M, Matsuoka Y, Konagaya H, Hashizume Y (1999) Multiple system atrophy with remarkable frontal lobe atrophy. Acta Neuropathol (Berl) 97:423–428Google Scholar
  265. Kostović I (1986) Prenatal development of the nucleus basalis complex and related fiber systems in man: A histochemical study. Neuroscience 17:1047–1077PubMedGoogle Scholar
  266. Kumral E, Evyapan D, Balkir K (1999) Acute caudate vascular lesions. Stroke 30:100–108PubMedGoogle Scholar
  267. Kunishio K, Haber SN (1994) Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356PubMedGoogle Scholar
  268. Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209PubMedGoogle Scholar
  269. Künzle H (1977) Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res 30:481–492PubMedGoogle Scholar
  270. Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234PubMedGoogle Scholar
  271. Kuo JS, Carpenter MB (1973) Organization of pallidothalamic projections in the rhesus monkey. J Comp Neurol 151:201–236PubMedGoogle Scholar
  272. Laitinen LV, Bergenheim AT, Hariz MI (1992a) Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 76:53–61PubMedGoogle Scholar
  273. Laitinen LV, Bergenheim AT, Hariz MI (1992b) Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 58:14–21PubMedGoogle Scholar
  274. Lang AE (2007) The progression of Parkinson disease. A hypothesis. Neurology 68:948–952PubMedGoogle Scholar
  275. Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350PubMedGoogle Scholar
  276. Langston JW (1987) MPTP: The promise of a new neurotoxin. In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 73–90Google Scholar
  277. Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann Neurol 59:591–596PubMedGoogle Scholar
  278. Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980PubMedGoogle Scholar
  279. Laplane D, Levasseur M, Pillon B, Dubois B, Baulac M, Mazoyer B et al (1989) Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain 112:699–725PubMedGoogle Scholar
  280. Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey. I Distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209PubMedGoogle Scholar
  281. Lavoie B, Parent A (1994b) Ibid. II. Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231PubMedGoogle Scholar
  282. Lavoie B, Parent A (1994c) Ibid. III. Cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241PubMedGoogle Scholar
  283. Lavoie B, Smith Y, Parent A (1989) Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry. J Comp Neurol 289:36–52PubMedGoogle Scholar
  284. Leckman JF (2002) Tourette’s syndrome. Lancet 16:1577–1586Google Scholar
  285. Leckman J, Cohen D (1999) Tourette’s syndrome – tics, obsession, compulsions: developmental psychopathology and clinical care. Wiley, New YorkGoogle Scholar
  286. Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159PubMedGoogle Scholar
  287. Leenders KL, Palmer AJ, Quinn N et al (1986) Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49:853–860PubMedPubMedCentralGoogle Scholar
  288. Lees AJ (1987) The Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). In: Marsden CD, Fahn S (eds) Movement disorders 2. Butterworths, London, pp 272–287Google Scholar
  289. Lehéricy S, Ducros M, Van de Moortele P-F, François C, Thivard L, Poupon C et al (2004a) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529PubMedGoogle Scholar
  290. Lehéricy S, Ducros M, Krainik A, François C, Van de Moortele P-F, Ugurbil K, Kim D-S (2004b) Diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309PubMedGoogle Scholar
  291. Lehéricy S, Bardinet E, Tremblay L, Van de Moortele P-F, Pochon J-B, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approach. Cereb Cortex 16:149–161PubMedGoogle Scholar
  292. Leiguarda R, Lees AJ, Merello M, Starkstein S, Marsden CD (1994) The nature of apraxia in corticobasal degeneration. J Neurol Neurosurg Psychiatry 57:455–459PubMedPubMedCentralGoogle Scholar
  293. Lemire RJ, Loeser JD, Leech RW, Alvord EC Jr (1975) Normal and abnormal development of the human nervous system. Harper & Row, HagerstownGoogle Scholar
  294. Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1988a) Single-unit analysis of the human ventral thalamic nuclear group: Somatosensory responses. J Neurophysiol 59:299–316PubMedGoogle Scholar
  295. Lenz FA, Tasker RR, Kwan HC, Schider S, Kwong R, Murayama Y et al (1988b) Single-unit analysis of the human ventral thalamic nuclear groups: Correlation of thalamic “tremor cells” with the 3-6 Hz component of parkinsonian tremor. J Neurosci 8:754–764PubMedPubMedCentralGoogle Scholar
  296. Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE (1990) Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movements. Brain 113:1795–1821PubMedGoogle Scholar
  297. Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543PubMedGoogle Scholar
  298. Lenz FA, Jaeger CJ, Seike MS, Lin YC, Reich SG, DeLong MR, Vitek JL (1999) Thalamic single neuron activity in patients with dystonia: Dystonia-related activity and somatic sensory reorganization. J Neurophysiol 82:2372–2392PubMedGoogle Scholar
  299. Letinić K, Kostović I (1996) Transient patterns of calbindin-D28K expression in the developing striatum of man. Neurosci Lett 220:211–214PubMedGoogle Scholar
  300. Lévesque M, Parent A (2005) The striatofugal fiber system in primates: A reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 102:11888–11893PubMedPubMedCentralGoogle Scholar
  301. Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16:916–928PubMedGoogle Scholar
  302. Lewy FH (1913) Zur pathologischen Anatomie der Paralysis agitans. Dtsch Z Nervenheilk 50:50–55Google Scholar
  303. Lewy FH (1923) Die Lehre vom Tonus und der Bewegung, zugleich systematische Untersuchung zur Klinik, Physiologie, Pathologie und Pathogenese der Paralysis agitans. Springer, BerlinGoogle Scholar
  304. Limousin P, Pollack P, Benazzouz A et al (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95PubMedGoogle Scholar
  305. Lipsman N, Schwarz ML, Huang Y et al (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12:462–468PubMedGoogle Scholar
  306. Litvan I, Mega MS, Cummings JL, Fairbanks L (1996) Neuropsychiatric aspects of progressive supranuclear palsy. Neurology 47:1184–1118PubMedGoogle Scholar
  307. Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C et al (2007) The etiopathogenesis of Parkinson’s disease and suggestions for future research. Part I. J Neuropathol Exp Neurol 66:251–257PubMedGoogle Scholar
  308. Lozano AM, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77:406–424PubMedGoogle Scholar
  309. Lozano AM, Hutchison WD, Kalia SK (2017) What have we learned about movement disorders from functional neurosurgery? Annu Rev Neurosci 40:453–477PubMedGoogle Scholar
  310. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: A comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578PubMedGoogle Scholar
  311. Luys J (1865) Recherches sur la système nerveux cérébrospinal, sa structure, ses functions et ses maladies. JB Baillière et Fils, ParisGoogle Scholar
  312. Macchi G, Jones EG (1997) Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 86:670–685PubMedGoogle Scholar
  313. MacMillan ML, Dostrovsky JO, Lozano AM, Hutchison WD (2004) Involvement of human thalamic neurons in internally and externally generated movements. J Neurophysiol 91:1085–1090PubMedGoogle Scholar
  314. Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96:549–564PubMedGoogle Scholar
  315. Magnin M, Jetzer U, Morel A, Jeanmonod D (2001) Microelectrode recording and macrostimulation in thalamic and subthalamic MRI guided stereotactic surgery. Neurophysiol Clin 31:230–238PubMedGoogle Scholar
  316. Mai JK, Forutan F (2012) Thalamus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 618–677Google Scholar
  317. Mai JK, Majtanik M (2019) Towards a common terminology for the thalamus. Front Neuroanat 12:114PubMedPubMedCentralGoogle Scholar
  318. Mai JK, Stephens PH, Hopf A, Cuello AC (1986) Substance P in the human brain. Neuroscience 17:709–739PubMedGoogle Scholar
  319. Maia TV, Conceiçāo VA (2017) The roles of phasic and tonic dopamine in tic learning and expression. Biol Psychiatry 82:401–412PubMedGoogle Scholar
  320. Mann DMA, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19PubMedGoogle Scholar
  321. Marín O, Anderson SA, Rubinstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076PubMedPubMedCentralGoogle Scholar
  322. Marras C, Lang A, van de Warrenburg BP et al (2016) Nomenclature of genetic movement disorders: Recommendations of the International Parkinson and Movement Disorders Society Task Force. Mov Disord 31:436–457PubMedGoogle Scholar
  323. Marsden CD (1982) The mysterious motor functions of the basal ganglia: The Robert Wartenberg lecture. Neurology 32:514–539PubMedGoogle Scholar
  324. Marsden CD, Obeso JA, Zarranz JJ (1985) The anatomical basis of symptomatic hemidystonia. Brain 108:463–483PubMedGoogle Scholar
  325. Martin JP (1927) Hemichorea resulting from a local lesion of the brain (the syndrome of the body of Luys). Brain 50:637–651Google Scholar
  326. Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488PubMedGoogle Scholar
  327. Matsumura M, Kojima J, Gardiner TW, Hikosaka O (1992) Visual and oculomotor functions of monkey subthalamic nucleus. J Neurophysiol 67:1615–1632PubMedGoogle Scholar
  328. McCann H, Cartwright H, Halliday GM (2015) Neuropathology of α-synuclein propagation and Braak hypothesis. Mov Disord 31:152–160PubMedGoogle Scholar
  329. McKee AC, Levine DN, Kowall NW, Richardson EP (1990) Peduncular hallucinosis associated with isolated infarction of the substantia nigra pars reticulata. Ann Neurol 27:500–504PubMedGoogle Scholar
  330. McNaught KS, Kapustin A, Jackson T, Jengelley T-A, Baptiste R, Shashidharan P et al (2004) Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol 56:540–547PubMedGoogle Scholar
  331. McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364:121–150PubMedGoogle Scholar
  332. Meno-Segovia J, Bolam JP (2017) Rethinking the pedunculopontine nucleus: From cellular organization to function. Neuron 94:7–18Google Scholar
  333. Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: Distant relatives or part of the same family? Trends Neurosci 27:585–588Google Scholar
  334. Mengual E, Prensa L, Tripathi A, Cebriáan C, Mongia S (2016) Comparative analysis of the axonal collateralization patterns of basal ganglia output nuclei in the rat. In: Rockland kS (ed) Axon and Brain Architecture. Academic/Elsevier, San Diego, pp 47–68Google Scholar
  335. Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28K. J Comp Neurol 365:628–639PubMedGoogle Scholar
  336. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686PubMedPubMedCentralGoogle Scholar
  337. Mesulam M-M, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283:611–633PubMedGoogle Scholar
  338. Mettler FA (1943) Extensive unilateral cerebral removals in the primate. Physiological effects and resultant degeneration. J Comp Neurol 79:185–243Google Scholar
  339. Meyers R, Fry WJ, Fry FJ, Dreyer LL, Schultz DF, Noyes RF (1959) Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg 16:32–54PubMedGoogle Scholar
  340. Middleton FA, Strick PL (2000) A revised neuroanatomy of frontal subcortical circuits. In: Lichter DG, Cummings JL (eds) Frontal subcortical circuits in psychiatry and neurology. Guilford, New York, pp 44–58Google Scholar
  341. Mink JW (2003) The basal ganglia and involuntary movements. Arch Neurol 60:1365–1368PubMedGoogle Scholar
  342. Mitchell LJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719PubMedGoogle Scholar
  343. Mitrofanis J (2005) Some certainty for the ‘zone of uncertainty’? Exploring the function of the zona incerta. Neuroscience 130:1–15Google Scholar
  344. Mitrofanis J, Mikuletic L (1999) Organisation of the cortical projection to the zona incerta of the thalamus. J Comp Neurol 412:173–185PubMedGoogle Scholar
  345. Miyagi Y (2015) Thalamic stimulation for Parkinson’s disease: Clinical studies of DBS. In: Itakura T (ed) Deep brain stimulation for neurological disorders: theoretical background and clinical application. Springer, Cham-Heidelberg-Dordrecht-London-New York, pp 103–120Google Scholar
  346. Mizukawa K, McGeer PL, Tago H, Peng JH, McGeer EG, Kimura H (1986) The cholinergic system of the human hindbrain studied by choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Brain Res 379:39–55PubMedGoogle Scholar
  347. Molnar GF, Pilliar A, Lozano AM, Dostrovsky JO (2005) Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease. J Neurophysiol 93:3094–3101PubMedGoogle Scholar
  348. Morel A (2007) Stereotaxic atlas of the human thalamus and basal ganglia. Informa Healthcare, New YorkGoogle Scholar
  349. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630PubMedPubMedCentralGoogle Scholar
  350. Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: Anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103PubMedPubMedCentralGoogle Scholar
  351. Mori H, Motoi Y, Kobayashi T, Hasegawa M, Yamamura A, Iwatsubo T, Mizuno Y (2001) Tau accumulation in a patient with pallidonigroluysian atrophy. Neurosci Lett 309:89–92PubMedGoogle Scholar
  352. Munchau A, Mathen D, Cox T, Quinn NP, Marsden CD, Bhatia KP (2000) Unilateral lesions of the globus pallidus: Report of four patients presenting with focal or segmental dystonia. J Neurol Neurosurg Psychiatry 69:494–498PubMedPubMedCentralGoogle Scholar
  353. Muthusamy KA, Aravamuthan BR, Kringelbach ML, Jenkinson N, Voets NL, Johansen-Berg H et al (2007) Connectivity of the human pedunculopontine nucleus region and diffusion tensor imaging in surgical targeting. J Neurol 107:814–820Google Scholar
  354. Nadjar A, Brotchie JM, Guigoni C, Li Q, Zhou S-B, Wang G-J et al (2006) Phenotype of striatofugal medium spiny neurons in parkinsonian and dyskinetic nonhuman primates: A call for a reappraisal of the functional organization of the basal ganglia. J Neurosci 26:8653–8661PubMedPubMedCentralGoogle Scholar
  355. Nambu A (2008) Seven problems on the basal ganglia. Curr Opin Neurobiol 18:595–604PubMedGoogle Scholar
  356. Nambu A (2015) Functional circuitry of the basal ganglia. In: Itakura T (ed) Deep brain stimulation for neurological disorders: theoretical background and clinical application. Springer, Cham-Heidelberg-Dordrecht-Heidelberg-London-New York, pp 1–10Google Scholar
  357. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor cortex. J Neurosci 16:2671–2683PubMedPubMedCentralGoogle Scholar
  358. Nambu A, Tokuno H, Inase M, Takada M (1997) Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16PubMedGoogle Scholar
  359. Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43:111–117PubMedGoogle Scholar
  360. Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: An autoradiographic study in monkey and cat. J Comp Neurol 180:1–16PubMedGoogle Scholar
  361. Nauta WJH, Mehler WR (1966) Projections from the lentiform nucleus in the monkey. Brain Res 1:3–42PubMedGoogle Scholar
  362. Nielsen MS, Bjarkam CR, Sørensen JC, Bojsen-Møller M, Sunde NA, Østergaard K (2007) Chronic subthalamic high-frequency deep brain stimulation in Parkinson’s disease – a histopathological study. Eur J Neurol 14:132–138Google Scholar
  363. Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: Neurobiology. 1. Anatomy and connectivity. Brain Res Rev 12:117–165Google Scholar
  364. Obeso I, Wilkinson K, Casabona E, Speekenbrink M, Bringus ML, Alvarez M et al (2014) The subthalamic nucleus and inhibitory control: Impact on subthalamotomy in Parkinson’s disease. Brain 137:1470–1480PubMedGoogle Scholar
  365. Obeso JA, Guridi J, Rodríguez-Oroz MC, Macias R, Rodríguez M, Alvarez L, Lopez G (2000a) Functional models of the basal ganglia: Where are we? In: Lozano AM (ed) Movement disorder surgery, Prog Neurol Surg, vol 15. Karger, Basel, pp 58–77Google Scholar
  366. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000b) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23(Suppl):S8–S19PubMedGoogle Scholar
  367. Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D et al (2017) Past, present and future of Parkinson’s disease: A special essay on the 200th anniversary of the shaking palsy. Mov Disord 32:1264–1310PubMedPubMedCentralGoogle Scholar
  368. Odekerke VJ, van Laar T, Mj S et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol 12:37–44Google Scholar
  369. Ogura M (2015) Stimulation of globus pallidus. In: Itakura T (ed) Deep brain stimulation for neurological disorders: Theoretical background and clinical application. Springer, Cham-Heidelberg-Dordrecht-London-New York, pp 87–101Google Scholar
  370. Ohye C (1998) Thalamotomy for Parkinson’s disease and other types of tremor: Part I – Historical background and techniques. In: Tasker RR (ed) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1167–1178Google Scholar
  371. Olanow CW (2007) Pathogenesis of cell death in Parkinson’s disease – 2007. Mov Disord 22(Suppl):S335–S342Google Scholar
  372. Olanow CW (2014) Do prions cause Parkinson’s disease? The evidence accumulates. Ann Neurol 75:331–333PubMedGoogle Scholar
  373. Olanow CW, Brundin P (2013) Parkinson’s disease and alpha-synuclein: Is Parkinson’s disease a prion-like disorder? Mov Disord 28:31–40PubMedGoogle Scholar
  374. Olanow CW, Kordower JH (2017) Targeting α-synuclein as a therapy for Parkinson’s disease: The battle begins. Mov Disord 32:203–207PubMedGoogle Scholar
  375. Olanow CW, McNaught K (2008) The etiopathogenesis of Parkinson’s disease: Basic mechanisms of neurodegeneration. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 3–23Google Scholar
  376. Olszewski J (1952) The Thalamus of the Macaca Mulatta. An atlas for use with the stereotactic instrument. Karger, BaselGoogle Scholar
  377. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel, New YorkGoogle Scholar
  378. Oppenheimer DR (1984) Diseases of the basal ganglia, cerebellum and motoneurons. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Arnold, London, pp 699–747Google Scholar
  379. Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671PubMedGoogle Scholar
  380. Ozelius LJ, Hewett JW, Page C, Bressman S, Kramer P, Shalish C et al (1997) The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 17:40–48PubMedGoogle Scholar
  381. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123:1767–1783PubMedGoogle Scholar
  382. Pakkenberg B, Møller A, Gundersen HJG, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33PubMedPubMedCentralGoogle Scholar
  383. Parent A (1996) Carpenter’s human neuroanatomy, 9th edn. Williams & Wilkins, BaltimoreGoogle Scholar
  384. Parent A, De Bellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–27PubMedGoogle Scholar
  385. Parent A, Smith Y (1987) Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods. Brain Res 436:296–310PubMedGoogle Scholar
  386. Parent A, Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127PubMedGoogle Scholar
  387. Parent A, Hazrati L-N (1995b) Ibid. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154PubMedGoogle Scholar
  388. Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primates: A fluorescence retrograde double labeling study. Neuroscience 10:1137–1150PubMedGoogle Scholar
  389. Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: Two distinct fiber systems in primate. Brain Res 303:385–390PubMedGoogle Scholar
  390. Parent A, Côté P-Y, Lavoie B (1995a) Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:131–197PubMedGoogle Scholar
  391. Parent A, Charara A, Pinault D (1995b) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284PubMedGoogle Scholar
  392. Parent A, Cossette M, Lévesque M (2000a) Anatomical considerations in basal ganglia surgery. In: Lozano AM (ed) Movement disorder surgery, Prog Neurol Surg, vol 15. Karger, Basel, pp 21–30Google Scholar
  393. Parent A, Sato F, Wu Y, Gauthier J, Lévesque M, Parent M (2000b) Organization of the basal ganglia: The importance of axon collateralization. Trends Neurosci 23(Suppl):S20–S27PubMedGoogle Scholar
  394. Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 27–46Google Scholar
  395. Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: Single-axon tracing and three-dimensional reconstructions. J Comp Neurol 439:162–175PubMedGoogle Scholar
  396. Parkinson J (1817) An essay on the shaking palsy. Sherwood Neely and Jones, LondonGoogle Scholar
  397. Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective. Nat Rev Neurosci 15:410–424PubMedGoogle Scholar
  398. Paulus W, Jellinger K (1991) The neuropathological basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50:743–755PubMedGoogle Scholar
  399. Paxinos G, Huang X-F, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 260–327Google Scholar
  400. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32PubMedGoogle Scholar
  401. Percheron G (2004) The thalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 592–675Google Scholar
  402. Percheron G, Yelnik J, François C (1984) A Golgi analysis of the primate globus pallidus. III Spatial organization of the striato-pallidal complex. J Comp Neurol 227:214–227PubMedGoogle Scholar
  403. Percheron G, François C, Talbi B, Meder JF, Fénelon G, Yelnik J (1993) The primate motor thalamus analysed with reference to subcortical afferent territories. Stereotact Funct Neurosurg 60:32–41PubMedGoogle Scholar
  404. Percheron G, François C, Talbi B, Yelnik J, Fénelon G (1996) The primate motor thalamus. Brain Res Rev 22:93–181PubMedGoogle Scholar
  405. Pessiglione M, Guehl D, Rolland AS, François C, Hirsch EC, Féger J, Tremblay L (2005) Thalamic neuronal activity in dopamine-depleted primates: Evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 25:1523–1531PubMedPubMedCentralGoogle Scholar
  406. Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM et al (1998) A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch Gen Psychiatry 55:326–333PubMedGoogle Scholar
  407. Pette H (1923) Zur Lokalisation hemichoreatischer Bewegungsstörungen. Dtsch Z Nervenheilk 7:270–271Google Scholar
  408. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain 129:1732–1747PubMedGoogle Scholar
  409. Plantinga BR, Temel Y, Duchin Y, Uludag K, Patriat R, Roebroeck A et al (2018) Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage 168:403–411PubMedGoogle Scholar
  410. Poewe W, Scherfler C (2003) Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice. Mov Disord 18(Suppl 7):S16–S21PubMedGoogle Scholar
  411. Poewe W, Wenning GK (2007) Parkinson plus disorders. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, pp 961–982Google Scholar
  412. Poirier LJ (1960) Experimental and histological study of midbrain dyskinesias. J Neurophysiol 23:534–551PubMedGoogle Scholar
  413. Poirier LJ, Giguère M, Marchand R (1983) Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat. Brain Res Bull 11:371–397PubMedGoogle Scholar
  414. Pollak P, Benabid AL, Gross C et al (1993) Effects of the stimulation of the subthalamic nucleus in Parkinson’s disease. Rev Neurol (Paris) 149:175–176Google Scholar
  415. Polyanska L, Critchley HD, Rae CL (2017) Centrality of prefrontal and motor preparation cortices to Tourette syndrome revealed by meta-analysis of task-based neuroimaging studies. Neuroimag Clin 16:257–267Google Scholar
  416. Pong M, Horn KM, Gibson AR (2008) Pathways for control of face and neck musculature by the basal ganglia and cerebellum. Brain Res Rev 58:249–264PubMedGoogle Scholar
  417. Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE (1995) Evidence for apoptotic cell death in Huntington’s disease and excitotoxic animal models. J Neurosci 15:3775–3787PubMedPubMedCentralGoogle Scholar
  418. Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:508–1521Google Scholar
  419. Postuma RB, Lang AE (2003) Hemiballism: Revisiting a classic disorder. Lancet Neurol 2:661–668PubMedGoogle Scholar
  420. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601PubMedGoogle Scholar
  421. Prensa L, Giménez-Amaya JM, Parent A (1999) Chemical heterogeneity of the striosomal compartment in the human striatum. J Comp Neurol 413:603–618PubMedGoogle Scholar
  422. Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578Google Scholar
  423. Quartarone A, Rizzo V, Morgante F (2008) Clinical features of dystonia: A pathophysiological revisitation. Curr Opin Neurol 21:484–490PubMedGoogle Scholar
  424. Quinn N (1989) Multiple system atrophy – the nature of the beast. J Neurol Neurosurg Psychiatry, Suppl, pp 78–89Google Scholar
  425. Raeva S, Vainberg N, Dubinin V (1999a) Analysis of spontaneous activity patterns of human thalamic ventrolateral neurons and their modifications due to functional brain changes. Neuroscience 88:365–376PubMedGoogle Scholar
  426. Raeva S, Vainberg N, Tikhonov Y, Tsetlin I (1999b) Analysis of evoked activity patterns of human thalamic ventrolateral neurons during verbally ordered voluntary movements. Neuroscience 88:377–392PubMedGoogle Scholar
  427. Ragsdale CW Jr, Graybiel AM (1981) The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistry. Brain Res 208:259–266PubMedGoogle Scholar
  428. Rauch S, Baxter L (1998) Neuroimaging of OCD and related disorders. In: Jenike M, Baer L, Minichiello W (eds) Obsessive-compulsive disorders: practical management. Mosby, Boston, pp 289–317Google Scholar
  429. Rauch SL, Dougherty DD, Malone D, Rezai A, Friehs G, Fischman AJ et al (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104:558–565PubMedGoogle Scholar
  430. Ravina B, Camicioli R, Como PG, Marsh L, Jankovic J, Weintraub D, Elm J (2007) The impact of depressive symptoms in early Parkinson’s disease. Neurology 69:342–347PubMedPubMedCentralGoogle Scholar
  431. Rebeiz JJ, Kolodny EH, Richardson EP (1967) Corticodentatonigral degeneration with neuronal achromasia: A progressive disorder in late adult life. Trans Am Neurol Assoc 92:23–26PubMedGoogle Scholar
  432. Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington’s disease. Proc Natl Acad Sci U S A 85:5733–5737PubMedPubMedCentralGoogle Scholar
  433. Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301PubMedGoogle Scholar
  434. Riley DE, Lang AE, Lewis A, Resch L, Ashby P, Hornykiewicz O, Black S (1990) Cortico-basal ganglionic degeneration. Neurology 40:1203–1212PubMedGoogle Scholar
  435. Romaniello R, Arrigoni F, Bassi MT, Borgatti R (2015) Mutations in α- and β-tubulin encoding genes: Implications in brain malformations. Brain Dev 37:273–280PubMedGoogle Scholar
  436. Rostasy K, Augood SJ, Hewett JW, Chung-on Leung J, Sasaki H, Ozelius LJ et al (2003) TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol Dis 12:11–24PubMedGoogle Scholar
  437. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: A multiple tracing study in macaque monkeys. J Comp Neurol 345:185–213PubMedGoogle Scholar
  438. Rouiller EM, Tanné J, Moret Y, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: A multiple retrograde tracing study. J Comp Neurol 409:131–152PubMedGoogle Scholar
  439. Rowland NC, Sammartino F, Lozano AM (2016) Advances in surgery for movement disorders. Mov Disord 32:5–10PubMedGoogle Scholar
  440. Rüb U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D et al (2013a) Degeneration of the cerebellum in Huntington’s disease (HD): Possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23:165–177PubMedGoogle Scholar
  441. Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC et al (2013b) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66PubMedGoogle Scholar
  442. Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K et al (2014) Huntington’s disease (HD): Degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol 24:247–260PubMedPubMedCentralGoogle Scholar
  443. Rüb U, Vonsattel JPG, Heinsen H, Korf H-W (2015) The neuropathology of Huntington’s disease: Classical findings, recent developments and correlation to functional neuroanatomy. Adv Anat Embryol Cell Biol 217:1–146PubMedGoogle Scholar
  444. Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol (Berl) 115:461–470Google Scholar
  445. Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257PubMedGoogle Scholar
  446. Saint-Cyr JA, Ungerleider LG, Desimone R (1990) Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. J Comp Neurol 298:129–156PubMedGoogle Scholar
  447. Sakai ST, Inase M, Tanji J (1999) Pallidal and cerebellar inputs to thalamocortical neurons projecting to the supplementary motor area in Macaca fuscata: A triple-labeling light microscopic study. Anat Embryol 199:1–19Google Scholar
  448. Sakai ST, Stepniewska I, Qi HX, Kaas JH (2000) Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: A multiple labeling study. J Comp Neurol 417:164–180PubMedGoogle Scholar
  449. Sambrook MA, Crossman AR, Mitchell I, Robertson RG, Clarke CE, Boyce S (1989) The basal ganglia mechanisms mediating primate models of movement disorders. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. Libbey, London-Paris, pp 123–144Google Scholar
  450. Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1113Google Scholar
  451. Saper CB, Petito CK (1982) Correspondence of melanin-pigmented neurons in the human brain with A1-A14 catecholamine cell groups. Brain 105:87–102PubMedGoogle Scholar
  452. Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: Potential role in systems degeneration, including Alzheimer’s disease. Neuroscience 23:389–398Google Scholar
  453. Sato F, Lavalleé P, Lévesque M, Parent A (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. J Comp Neurol 417:17–31Google Scholar
  454. Sato F, Parent M, Lévesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152Google Scholar
  455. Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35:26–37Google Scholar
  456. Scatton B, Dennis T, L’Heureux R, Montfort J-C, Duyckaerts C, Javoy-Agid F (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurons in the lumbar spinal cord of parkinsonian patients. Brain Res 380:181–185PubMedGoogle Scholar
  457. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, StuttgartGoogle Scholar
  458. Schapira AHV (2007) Parkinson’s disease. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby-Elsevier, Philadelphia, pp 927–960Google Scholar
  459. Schapira AHV, Chaudkuri KR, Jenner P (2017) Non-motor features of Parkinson’s disease. Nat Rev Neurosci 18:435–450PubMedGoogle Scholar
  460. Schell GR, Strick PL (1984) The origin of thalamic inputs to the arcuate premotor and supplementary premotor areas. J Neurosci 4:539–560PubMedPubMedCentralGoogle Scholar
  461. Scherfler C, Seppi K, Donnemiller E, Goebel G, Brenneis C, Virgolini I et al (2005) Voxel-wise analysis of [123I] beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain 128:1605–1612PubMedGoogle Scholar
  462. Schneider JS, Yuwiler A, Markham CH (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP. Brain Res 411:144–150PubMedGoogle Scholar
  463. Schultz W (1986) Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events. J Neurophysiol 55:660–677PubMedGoogle Scholar
  464. Schuurman PR, Bosch DA, Bossuyt PM et al (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468PubMedGoogle Scholar
  465. Schuurman PR, Bosch DA, Merkus MP et al (2008) Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression. Mov Disord 23:1146–1153PubMedGoogle Scholar
  466. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol (Berl) 124:1–21Google Scholar
  467. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794PubMedPubMedCentralGoogle Scholar
  468. Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376PubMedGoogle Scholar
  469. Shink E, Sidibé M, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 382:348–363PubMedGoogle Scholar
  470. Shy GM, Drager GA (1960) A neurological syndrome associated with orthostatic hypotension: A clinico-pathological study. Arch Neurol 2:522–527Google Scholar
  471. Sidibé M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382:323–347PubMedGoogle Scholar
  472. Smith MC (1966) Pathological findings subsequent to stereotactic lesions. J Neurosurg 24:443–445Google Scholar
  473. Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23(Suppl):S28–S33PubMedGoogle Scholar
  474. Smith Y, Hazrati L-N, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294:306–323PubMedGoogle Scholar
  475. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387PubMedGoogle Scholar
  476. Speelman JD (1991) Parkinson’s disease and stereotaxic neurosurgery. Thesis, University of AmsterdamGoogle Scholar
  477. Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis–parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237:517–522PubMedGoogle Scholar
  478. Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol 271:473–492PubMedGoogle Scholar
  479. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359PubMedGoogle Scholar
  480. Stefanova N, Bücke P, Duerr S, Wenning GK (2009) Multiple system atrophy: An update. Lancet Neurol 8:1172–1178PubMedGoogle Scholar
  481. Stepniewska I, Preuss TM, Kaas JH (1994a) Architectonic subdivisions of the motor thalamus of owl monkeys: Nissl, acetylcholinesterase, and cytochrome oxidase patterns. J Comp Neurol 349:536–557PubMedGoogle Scholar
  482. Stepniewska I, Preuss TM, Kaas JH (1994b) Thalamic connections of the primary motor cortex (M1) of owl monkeys. J Comp Neurol 349:558–582PubMedGoogle Scholar
  483. Stern G (1966) The effects of lesions in the substantia nigra. Brain 89:449–478PubMedGoogle Scholar
  484. Su M, Yoshida Y, Hirata Y, Watahiki Y, Nagata K (2001) Primary involvement of the motor area in association with the nigrostriatal pathway in multiple system atrophy: Neuropathological and morphometric evaluations. Acta Neuropathol (Berl) 101:57–65Google Scholar
  485. Surmeister DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson’s disease. Nat Rev Neurosci 18:101–113Google Scholar
  486. Svennilson E, Torvik A, Lowe R, Leksell L (1960) Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatr Scand 35:358–377PubMedGoogle Scholar
  487. Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36Google Scholar
  488. Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19:463–476PubMedGoogle Scholar
  489. Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15PubMedGoogle Scholar
  490. Szabo J (1972) The course and distribution of efferents from the tail of the caudate nucleus in the monkey. Exp Neurol 37:562–572PubMedGoogle Scholar
  491. Szabo J (1980) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321PubMedGoogle Scholar
  492. Tasker RR (1998) Thalamotomy for Parkinson’s disease and other types of tremor: Part II – The outcome of thalamotomy for tremor. In: Tasker RR (ed) Textbook of stereotactic and functional neurosurgery. McGraw-Hill, New York, pp 1179–1198Google Scholar
  493. Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76:393–413PubMedGoogle Scholar
  494. ten Donkelaar HJ (2015) Development of the basal ganglia and the basal forebrain. In: Toga AW (ed) Brain mapping: an encyclopedic reference, vol 2. Academic/Elsevier, Oxford, pp 357–365Google Scholar
  495. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A Clinical Neuroembryology: Development and developmental disorders of the human central nervous system. Springer, Berlin-Heidelberg-New York, pp 345-428Google Scholar
  496. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Kamphuis-van Ulzen K, Hori A, Shiota K (2014) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A Clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd ed. Springer, Heidelberg-New York-Dordrecht-London, pp 421-521Google Scholar
  497. ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a terminologia neuroanatomica. Clin Anat 30:145–155PubMedGoogle Scholar
  498. ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated terminologia neuroanatomica: A concise encyclopedia of human neuroanatomy. Springer, ChamGoogle Scholar
  499. Thu DCV, Oorschot DE, Tippett LJ, Nana AL, Hogg VM, Synek BJ et al (2010) Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 133:1094–1110Google Scholar
  500. Tinazzi M, Rosso T, Fiaschi A (2003) Role of the somatosensory system in primary dystonia. Mov Disord 18:605–622PubMedGoogle Scholar
  501. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ et al (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221PubMedGoogle Scholar
  502. TNA (2017) Terminologia neuroanatomica. Federative International Programme for Anatomical TerminologyGoogle Scholar
  503. Tolnay M, Probst A (1999) Review: Tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187PubMedGoogle Scholar
  504. Tomlinson BE, Corsellis JAN (1984) Aging and the dementias. In: Adams HJ, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Arnold, London, pp 951–1025Google Scholar
  505. Trepanier LL, Saint-Cyr JA, Lozano AM, Lang AE (1998) Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology 51:207–215PubMedGoogle Scholar
  506. Trétiakoff C (1919) Contribution à l’étude de l’anatomie pathologique du locus niger de Soemmering avec quelqeus déductions relatives à la pathogénie des troubles de tonus musculaire et de la maladie de Parkinson. Thèse No 293, Université de ParisGoogle Scholar
  507. Tsai C (1925) The optic tracts and centres of the opossum Didelphis virginiana. J Comp Neurol 294:306–323Google Scholar
  508. Tsuchiya K, Ozawa E, Haga C, Watabiki S, Ikeda M, Sano M et al (2000) Constant involvement of the Betz cells and pyramidal tract in multiple system atrophy: A clinicopathological study of seven autopsy cases. Acta Neuropathol (Berl) 99:628–636Google Scholar
  509. Uhl GR, Hedreen JC, Price DL (1985) Parkinson’s disease: Loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–1218PubMedGoogle Scholar
  510. Ulfig N, Neudörfer F, Bohl J (2001) Development-related expression of AKAP79 in the striatal compartments of the human brain. Cells Tissues Organs 168:319–329PubMedGoogle Scholar
  511. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedGoogle Scholar
  512. Valanne L, Ketonen L, Majander A, Suomalainen A, Pihko H (1998) Neuroradiological findings in children with mitochondrial disorders. AJNR Am J Neuroradiol 19:369–377PubMedGoogle Scholar
  513. van Domburg PHMF, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging and aging diseases. Adv Anat Embryol Cell Biol 121:1–132PubMedGoogle Scholar
  514. Van Hoesen GW, Yeterian EH, Lavizzo-Mourey R (1981) Widespread corticostriate projections from temporal cortex in the rhesus monkey. J Comp Neurol 199:205–219PubMedGoogle Scholar
  515. Verny M, Duyckaerts C, Agid Y, Hauw J-J (1996a) The significance of cortical pathology in progressive supranuclear palsy. Clinicopathological data in 10 cases. Brain 119:1123–1136PubMedGoogle Scholar
  516. Verny M, Jellinger KA, Hauw J-J, Bancher C, Litvan I, Agid Y (1996b) Progressive supranuclear palsy: A clinicopathological study of 21 cases. Acta Neuropathol (Berl) 91:427–431Google Scholar
  517. Vis JC, Schipper E, de Boer-van Huizen RT, Verbeek MM, de Waal RMW, Wesseling P, ten Donkelaar HJ, Kremer B (2005) Expression pattern of apoptosis-markers in Huntington’s disease. Acta Neuropathol (Berl) 109:321–328Google Scholar
  518. Vitek JL, Ashe J, DeLong MR, Alexander GE (1994) Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol 71:1498–1513PubMedGoogle Scholar
  519. Vitek JL, Ashe J, DeLong MR, Kaneoke Y (1998) Microstimulation of primate motor thalamus: Somatotopic organization and differential distribution of evoked motor responses among subnuclei. J Neurophysiol 75:2486–2495Google Scholar
  520. Vogt C, Vogt O (1919) Zur Kenntnis der pathologischen Veränderungen des Striatums und des Pallidums und zur Pathophysiologie der dabei auftretenden Krankheitserscheinungen. Sitzungsber Heidelb Akad Wiss 10(B14):1–56Google Scholar
  521. Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striären Systems. J Psychol Neurol (Lpz) 25:627–846Google Scholar
  522. Volkmann J (2008) Surgery for Parkinson’s disease. In: Hallett M, Poewe W (eds) Therapeutics of Parkinson’s disease and other movement disorders. Wiley-Blackwell, Oxford, pp 121–143Google Scholar
  523. Voneida T (1960) An experimental study of the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey. J Comp Neurol 115:75–87PubMedGoogle Scholar
  524. von Monakow C (1895) Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Sehhügel und die Regio subthalamica, nebst Beiträgen zur Kenntnis früherworbenen Gross- und Kleinhirndefekte. Arch Psychiatr Nervenkr 27:1–128Google Scholar
  525. Vonsattel J-P, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedGoogle Scholar
  526. Vonsattel JPG (2008) Huntington disease models and human neuropathology: similarities and differences. Acra Neuroathol (Berl) 115:55–69Google Scholar
  527. Vonsattel JPG, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369–384PubMedGoogle Scholar
  528. Vonsattel JPG, Lianski M (2004) Huntington’s disease. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The Neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 376–401Google Scholar
  529. Walker AE (1938) The primate thalamus. University of Chicago Press, ChicagoGoogle Scholar
  530. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenetic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260PubMedPubMedCentralGoogle Scholar
  531. Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D (2003) Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 60:74–77PubMedGoogle Scholar
  532. Waters CM, Peck R, Rossor M, Reynolds GP, Hunt SP (1988) Immunocytochemical studies in the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chorea. Neuroscience 24:419–438Google Scholar
  533. Watson C, Bartholomaeus C, Puelles L (2019) Time for radical changes in brain stem nomenclature – applying the lessons from developmental gene patterns. Front Neuroanat 13:10Google Scholar
  534. Weintraub D, Elias WJ (2017) Focus ultrasound therapy for movement disorders: current data and expected development. Mov Disord 32:20–27PubMedGoogle Scholar
  535. Wenning GK, Jellinger KA (2005a) The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol (Berl) 109:129–140Google Scholar
  536. Wenning GK, Jellinger KA (2005b) The role of α-synuclein and tau in neurodegenerative movement disorders. Curr Opin Neurol 18:357–362PubMedGoogle Scholar
  537. Wenning GK, Ben-Shlomo Y, Magalhaes M, Daniel SE, Quinn NP (1995) Clinicopathological study of 35 cases of multiple system atrophy. J Neurol Neurosurg Psychiatry 58:160–166PubMedPubMedCentralGoogle Scholar
  538. Wenning GK, Tison F, Ben-Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147PubMedGoogle Scholar
  539. Whittier JR (1947) Ballism and subthalamic nucleus. Arch Neurol Psychiatry 58:672–692PubMedGoogle Scholar
  540. Whittier JR, Mettler FA (1949) Studies on the subthalamus of the rhesus monkey. II Hyperkinesia and other physiological effects of subthalamus lesions with special reference to the subthalamic nucleus of Luys. J Comp Neurol 90:319–372PubMedGoogle Scholar
  541. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758PubMedGoogle Scholar
  542. Wichmann T, DeLong MR (2016) Deep brain stimulation for movement disorders of basal ganglia origin: Restoring function or functionality? Neurotherapeutics 13:264–283PubMedPubMedCentralGoogle Scholar
  543. Wichmann T, Bergman H, DeLong MR (1994a) The primate subthalamic nucleus. I Functional properties in intact animals. J Neurophysiol 72:494–506PubMedGoogle Scholar
  544. Wichmann T, Bergman H, DeLong MR (1994b) Ibid. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMedGoogle Scholar
  545. Wichmann T, DeLong MR, Vitel JL (2000) Pathophysiological considerations in basal ganglia surgery: Role of the basal ganglia in hypokinetic and hyperkinetic movement disorders. In: Lozano AM (ed) Movement disorder surgery, Prog Neurol Surg, vol 15. Karger, Basel, pp 31–57Google Scholar
  546. Wiesendanger E, Clarke S, Kraftsik R, Tardif E (2004) Topography of cortico-striatal connections in man: Anatomical evidence for parallel organization. Eur J Neurosci 20:1915–1922PubMedGoogle Scholar
  547. Williams DR, Lees AJ (2009) Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 8:270–279PubMedGoogle Scholar
  548. Wilson CG (2003) The basal ganglia. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New York, pp 361–413Google Scholar
  549. Wilson VG (2018) Subthalamo-pallidal circuit. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, New York, pp 143–150Google Scholar
  550. Wilson SAK (1914) An experimental research into the anatomy and physiology of the corpus striatum. Brain 36:427–492Google Scholar
  551. Yelnik J, Percheron G, François C (1984) A Golgi analysis of the primate globus pallidus. II Quantitative morphology and spatial disposition of dendritic arborization. J Comp Neurol 227:200–213PubMedGoogle Scholar
  552. Yelnik J, François C, Percheron G, Heyner S (1987) Golgi study of the primate substantia nigra. I Quantitative morphology and typology of nigral neurons. J Comp Neurol 265:455–472PubMedGoogle Scholar
  553. Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312:43–67PubMedGoogle Scholar
  554. Yeterian EH, Pandya DN (1993) Corticostriatal connections of the parietal association cortices in rhesus monkeys. J Comp Neurol 332:175–197PubMedGoogle Scholar
  555. Yeterian EH, Pandya DN (1995) Corticostriatal connections of extrastriate visual areas in rhesus monkeys. J Comp Neurol 352:436–457PubMedGoogle Scholar
  556. Yeterian EH, Pandya DN (1998) Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399:384–402PubMedGoogle Scholar
  557. Young AB, Albin RL, Penney JB (1989) Neuropharmacology of basal ganglia functions: Relationship to pathophysiology of movement disorders. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. Libbey, London-Paris, pp 17–27Google Scholar
  558. Záborsky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L (1985) Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience 14:427–453Google Scholar
  559. Zadikoff C, Lang AE (2005) Apraxia in movement disorders. Brain 128:1480–1497PubMedGoogle Scholar
  560. Zech M, Bogerts B (1985) Methionine-enkephalin and substance P in the basal ganglia of normals, Parkinson patients, Huntington patients and schizophrenics a qualitative immunohistochemical study. Acta Neuropathol (Berl) 68:32–38Google Scholar
  561. Zrinzo L, Zrinzo LV, Tisch S, Limousin PD, Yousry TA, Afshar F, Hariz MI (2008) Stereotactic localization of the human pedunculopontine nucleus: Atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131:1588–1598PubMedGoogle Scholar
  562. Zijlmans J, Thijssen HOM, Vogels OJM, Kremer HPH, Poels PJE, Schoonderwaldt HC et al (1995) MRI in patients suspected of vascular parkinsonism. Neurology 45:2183–2188PubMedGoogle Scholar
  563. Zijlmans J, Booij J, Valk J, Lees A, Horstink M (2002) Posttraumatic tremor without parkinsonism in a patient with complete contralateral loss of the nigrostriatal pathway. Mov Disord 17:1086–1088PubMedGoogle Scholar
  564. Zijlmans J, Daniel S, Hughes A, Révész T, Lees A (2004) A clinicopathological investigation of vascular parkinsonism (VP). Including clinical criteria for the diagnosis of VP. Mov Disord 19:630–640PubMedGoogle Scholar
  565. Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hans J. ten Donkelaar
    • 1
    Email author
  • Bart van de Warrenburg
    • 2
  • Michèl Willemsen
    • 3
  • Benno Küsters
    • 4
  • Yoshio Hashizume
    • 5
  • Akira Hori
    • 6
  1. 1.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.935 Department of NeurologyRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.820 Department of Pediatric NeurologyRadboud University Medical CentreNijmegenThe Netherlands
  4. 4.824 Department of PathologyRadboud University Medical CentreNijmegenThe Netherlands
  5. 5.Research Institute for Longevity MedicineFukushimura Hospital ToyohashiJapan
  6. 6.Department of NeuropathologyMedizinische HochschuleHannoverGermany

Personalised recommendations