fMRI pp 355-383 | Cite as

The Perirhinal, Entorhinal, and Parahippocampal Cortices and Hippocampus: An Overview of Functional Anatomy and Protocol for Their Segmentation in MR Images

  • Sasa L. KivisaariEmail author
  • Alphonse Probst
  • Kirsten I. Taylor


It is well established that the medial temporal lobe (MTL) plays a critical role in forming memories of autobiographical events and world knowledge. Converging neuroscientific research suggests that each of the MTL subregions – that is, the hippocampus proper and perirhinal, entorhinal, and parahippocampal cortices – also performs other mnemonic and non-mnemonic functions. This functional specialization is highly relevant for the clinical diagnosis of patients with acquired brain damage and neurodegenerative disorders such as Alzheimer’s disease. This chapter briefly reviews the functional anatomy of the MTL and the neuropsychological syndrome of early Alzheimer’s disease. One of the greatest difficulties facing the continued neuroscientific and clinical investigation of the human MTL is the identification of its subregions on MR images. The last part of this chapter, therefore, describes the gross anatomy of the MTL and provides a protocol for the reliable segmentation of each subregion. The study of accurately anatomically delineated MTL subregions with different behavioral and imaging approaches is required to advance our understanding of the basic functions of the MTL and, correspondingly, the clinical relevance of lesions in this complex region.


Episodic memory Medial temporal lobe Parahippocampal gyrus Perirhinal cortex Pattern separation 





Angular bundle (PHg white matter)


Anterior calcarine fissure


Alzheimer’s disease






Band of Giacomini


Crus of the fornix


Collateral sulcus


Hippocampal digitations


Entorhinal cortex


Fusiform gyrus




Gyrus ambiens


Gyrus of Schwalbe


Hippocampal body


Hippocampal fissure


Hippocampal head


Hippocampal sulcus


Hippocampal tail




Intralimbic gyrus




Inferotemporal gyrus




Lingual gyrus


Limen insulae gray matter


Limen insulae white matter




Mammillary body


Medial temporal lobe


Occipitotemporal sulcus




Parahippocampal cortex


Parahippocampal gyrus


Perirhinal cortex




Quadrigeminal cistern


Rhinal sulcus




Semiannular sulcus


Semilunar gyrus






Temporal horn of lateral ventricle


Temporal pole


Transentorhinal cortex




Uncinate gyrus


Uncal notch



The authors thank Dr. Daniela Hirni and Dr. Mia Liljeström for comments and helpful discussions. The authors also thank photographer Martin Portmann and the Departments of Neuropathology and Neuroradiology, University Hospital Basel, for providing the postmortem and MRI brain data, respectively. This research was supported by a Swiss National Science Foundation Ambizione Fellowship (KIT), a grant from the Alzheimer’s Association of Both Basels (KIT), Academy of Finland (grant #286070 to SLK), the Finnish Concordia Fund (SLK), the Finnish Cultural Foundation (SLK), and the Swiss Federal Commission for Scholarships for Foreign Students (Berne) (SLK).


  1. Acres K, Taylor KI et al (2009) Complementary hemispheric asymmetries in object naming and recognition: a voxel-based correlational study. Neuropsychologia 47:1836–1843PubMedCrossRefGoogle Scholar
  2. Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–489PubMedCrossRefGoogle Scholar
  3. Aggleton JP, Brown MW (2006) Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci 10:455–463PubMedCrossRefGoogle Scholar
  4. Aggleton JP, Mishkin M (1985) Mamillary-body lesions and visual recognition in monkeys. Exp Brain Res 58:190–197PubMedCrossRefGoogle Scholar
  5. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi M (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33:1564–1578PubMedCrossRefGoogle Scholar
  6. Aguirre GK, D’Esposito M (1999) Topographical dis-orientation: a synthesis and taxonomy. Brain 122:1613–1628PubMedCrossRefGoogle Scholar
  7. Allen G, Barnard H, McColl R et al (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487PubMedCrossRefGoogle Scholar
  8. Alvarado MC, Bachevalier J (2005a) Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J Neurosci 25:1599–1609PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alvarado MC, Bachevalier J (2005b) Selective neurotoxic damage to the hippocampal formation impairs performance of the transverse patterning and location memory tasks in rhesus macaques. Hippocampus 15:118–131PubMedCrossRefGoogle Scholar
  10. Alvarado MC, Wright AA et al (2002) Object and spatial relational memory in adult rhesus monkeys is impaired by neonatal lesions of the hippocampal formation but not the amygdaloid complex. Hippocampus 12:421–433PubMedCrossRefGoogle Scholar
  11. Alzheimer’s Association (2011) 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 7:208–244CrossRefGoogle Scholar
  12. American Psychiatric Association (ed) (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  13. Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38:95–113PubMedCrossRefGoogle Scholar
  14. Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18:64–80PubMedCrossRefGoogle Scholar
  15. Bakker A, Kirwan CB et al (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38:347–358PubMedCrossRefGoogle Scholar
  17. Bar M, Aminoff E et al (2008) Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J Neurosci 28:8539–8544PubMedPubMedCentralCrossRefGoogle Scholar
  18. Barbeau E, Didic M et al (2004) Evaluation of visual recognition memory in MCI patients. Neurology 62:1317–1322PubMedCrossRefGoogle Scholar
  19. Barense MD, Bussey TJ et al (2005) Functional specialization in the human medial temporal lobe. J Neurosci 25:10239–10246PubMedPubMedCentralCrossRefGoogle Scholar
  20. Barense MD, Gaffan D et al (2007) The human medial temporal lobe processes online representations of complex objects. Neuropsychologia 45:2963–2974PubMedCrossRefGoogle Scholar
  21. Barense MD, Henson RNA et al (2010) Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint. Hippocampus 20:389–401PubMedPubMedCentralGoogle Scholar
  22. Barrash J (1998) A historical review of topographical disorientation and its neuroanatomical correlates. J Clin Exp Neuropsychol 20:807–827PubMedCrossRefGoogle Scholar
  23. Barrash J, Damasio H et al (2000) The neuroanatomical correlates of route learning impairment. Neuropsychologia 38:820–836PubMedCrossRefGoogle Scholar
  24. Bellgowan PSF, Bandettini PA et al (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. NeuroImage 29:1244–1251PubMedCrossRefGoogle Scholar
  25. Binnewijzend MAA, Schoonheim MM, Sanz-Arigita E et al (2012) Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 33:2018–2028PubMedCrossRefGoogle Scholar
  26. Blaizot X, Mansilla F et al (2010) The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cereb Cortex 20:2198–2212PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bohbot VD, Allen JJB et al (2000) Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex. Ann N Y Acad Sci 911:355–368PubMedCrossRefGoogle Scholar
  28. Bondi MW, Houston WS et al (2005) FMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64:501–508PubMedPubMedCentralCrossRefGoogle Scholar
  29. Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68:325–332PubMedCrossRefGoogle Scholar
  30. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  31. Brodmann K (1909) Vergleichende Lokalisationlehre der Grosshirnrinde. Barth, LeipzigGoogle Scholar
  32. Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51–61PubMedCrossRefGoogle Scholar
  33. Buffalo EA, Bellgowan PSF et al (2006) Distinct roles for medial temporal lobe structures in memory for objects and their locations. Learn Mem 13:638–643PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burgess N, Maguire EA et al (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage 14:439–453PubMedCrossRefGoogle Scholar
  35. Burgess N, Maguire EA et al (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641PubMedCrossRefGoogle Scholar
  36. Bussey TJ, Saksida LM (2002) The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex. Eur J Neurosci 15:355–364PubMedCrossRefGoogle Scholar
  37. Bussey TJ, Saksida LM et al (2002) Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur J Neurosci 15(2):365–374PubMedCrossRefGoogle Scholar
  38. Bussey TJ, Saksida LM et al (2005) The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q J Exp Psychol B 58:269–282PubMedCrossRefGoogle Scholar
  39. Canto CB, Wouterlood FG et al (2008) What does anatomical organization of entorhinal cortex tell us? Neural Plast 2008:1–18CrossRefGoogle Scholar
  40. Carr VA, Rissman J et al (2010) Imaging the human medial temporal lobe with high-resolution fMRI. Neuron 65:298–308PubMedPubMedCentralCrossRefGoogle Scholar
  41. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132PubMedCrossRefGoogle Scholar
  42. Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey: VII. Intrinsic connections. J Comp Neurol 500:612–633PubMedCrossRefGoogle Scholar
  43. Colombo M, Fernandez T et al (1998) Functional differentiation along the anterior-posterior axis of the hippocampus in monkeys. J Neurophysiol 80:1002–1005PubMedCrossRefGoogle Scholar
  44. Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259CrossRefGoogle Scholar
  45. Corkin S, Amaral DG et al (1997) H. M’.s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17:3964–3979PubMedPubMedCentralCrossRefGoogle Scholar
  46. Coutureau E, Di Scala G (2009) Entorhinal cortex and cognition. Prog Neuro-Psychopharmacol Biol Psychiatry 33:753–761CrossRefGoogle Scholar
  47. Crutch SJ, Lehmann M et al (2012) Posterior cortical atrophy. Lancet Neurol 11:170–178PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cusack R, Russell B et al (2005) An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. NeuroImage 24:82–91PubMedCrossRefGoogle Scholar
  49. Dale AM, Fischl B et al (1999) Cortical surface-based analysis—I. Segmentation and surface reconstruction. Neuroimage 9:179–194PubMedCrossRefGoogle Scholar
  50. Damoiseaux JS, Prater KE, Miller BL et al (2012) Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging 33:828.e19–828.e30CrossRefGoogle Scholar
  51. Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16:693–700PubMedCrossRefGoogle Scholar
  52. Davachi L, Wagner AD (2002) Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol 88:982–990PubMedCrossRefGoogle Scholar
  53. De Renzi E (1982) Disorders of space exploration and cognition. Wiley, New YorkGoogle Scholar
  54. De Renzi E, Faglioni P et al (1977) Topographical amnesia. J Neurol Neurosurg Psychiatry 40:498–505PubMedPubMedCentralCrossRefGoogle Scholar
  55. Deng W, Aimone JB et al (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 24:49–62PubMedPubMedCentralCrossRefGoogle Scholar
  57. Di Paola M, Macaluso E et al (2007) Episodic memory impairment in patients with Alzheimer’s disease is correlated with entorhinal cortex atrophy a voxel-based morphometry study. J Neurol 254:774–781PubMedCrossRefGoogle Scholar
  58. Diana RA, Yonelinas AP et al (2007) Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci 11:379–386PubMedCrossRefGoogle Scholar
  59. Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624–1635PubMedCrossRefGoogle Scholar
  60. Dickerson BC, Salat DH et al (2004) Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 56:27–35PubMedPubMedCentralCrossRefGoogle Scholar
  61. Dickerson BC, Feczko E et al (2009) Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30(3):432–440PubMedCrossRefGoogle Scholar
  62. Ding S-L, Van Hoesen GW (2010) Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359–1379PubMedCrossRefGoogle Scholar
  63. Ding S-L, Van Hoesen GW et al (2009) Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595–623PubMedPubMedCentralCrossRefGoogle Scholar
  64. Doeller CF, Barry C et al (2010) Evidence for grid cells in a human memory network. Nature 463:657–661PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48PubMedCrossRefGoogle Scholar
  66. Duvernoy HM (1998) The human hippocampus, 2nd edn. Springer, BelinCrossRefGoogle Scholar
  67. Eichenbaum H, Dudchenko P et al (1999) The hippocampus, memory and place cells: is it spatial memory or a memory space? Neuron 23:209–226PubMedCrossRefGoogle Scholar
  68. Eichenbaum H, Yonelinas AP et al (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152PubMedPubMedCentralCrossRefGoogle Scholar
  69. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601PubMedCrossRefGoogle Scholar
  70. Epstein R, Harris A et al (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125PubMedCrossRefGoogle Scholar
  71. Eustache F, Desgranges B et al (2001) Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport 12:683–685PubMedCrossRefGoogle Scholar
  72. Ewers M, Sperling RA et al (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442PubMedPubMedCentralCrossRefGoogle Scholar
  73. Fischl B, Sereno MI et al (1999) Cortical surface-based analysis—II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207PubMedCrossRefGoogle Scholar
  74. Fyhn M, Molden S et al (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264PubMedCrossRefGoogle Scholar
  75. Fyhn M, Hafting T et al (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446:190–194PubMedCrossRefGoogle Scholar
  76. Gadian DG, Aicardi J et al (2000) Developmental amnesia associated with early hypoxic–ischaemic injury. Brain 123:499–507PubMedCrossRefGoogle Scholar
  77. Gale SD, Hopkins RO (2004) Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc 10:60–71PubMedCrossRefGoogle Scholar
  78. Ghoshal N, García-Sierra F et al (2002) Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Exp Neurol 177:475–493PubMedCrossRefGoogle Scholar
  79. Giovanello KS, Schnyer DM et al (2004) A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus 14:5–8PubMedCrossRefGoogle Scholar
  80. Gould RL, Brown RG, Owen AM et al (2006) Task-induced deactivations during successful paired associates learning: an effect of age but not Alzheimer’s disease. NeuroImage 31:818–831PubMedCrossRefGoogle Scholar
  81. Greicius MD, Srivastava G, Reiss AL et al (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci 101:4637–4642PubMedCrossRefGoogle Scholar
  82. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677PubMedCrossRefGoogle Scholar
  83. Guillozet AL, Weintraub S et al (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736PubMedCrossRefGoogle Scholar
  84. Hafting T, Fyhn M et al (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806PubMedCrossRefGoogle Scholar
  85. Hanke J (1997) Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat 179:335–339PubMedCrossRefGoogle Scholar
  86. Hannula DE, Ranganath C (2008) Medial temporal lobe activity predicts successful relational memory binding. J Neurosci 28:116–124PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hasselmo ME, Brandon MP (2008) Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Neural Plast 2008:1–12CrossRefGoogle Scholar
  88. Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11:523–532PubMedCrossRefGoogle Scholar
  89. Henke K, Buck A et al (1997) Human hippocampus establishes associations in memory. Hippocampus 7:249–256PubMedCrossRefGoogle Scholar
  90. Henke K, Kroll NEA et al (1999a) Memory lost and regained following bilateral hippocampal damage. J Cogn Neurosci 11:682–697PubMedCrossRefGoogle Scholar
  91. Henke K, Weber B et al (1999b) Human hippocampus associates information in memory. Proc Natl Acad Sci U S A 96:5884–5889PubMedPubMedCentralCrossRefGoogle Scholar
  92. Henson R (2005) A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B 58:340–360PubMedCrossRefGoogle Scholar
  93. Hirni D, Monsch AU et al (2011) Relative association of perirhinal and entorhinal cortex integrity with semantic and episodic memory performance: implications for early detection of Alzheimer’s disease. In: 288.0 Neuroscience meeting planner. Society for Neuroscience, Washington, DCGoogle Scholar
  94. Hogan RE, Mark KE et al (2000) Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. Radiology 216:291–297PubMedCrossRefGoogle Scholar
  95. Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2:311–333PubMedGoogle Scholar
  96. Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 871–914CrossRefGoogle Scholar
  97. Insausti R, Amaral DG et al (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395PubMedCrossRefGoogle Scholar
  98. Insausti R, Juottonen K et al (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659–671PubMedGoogle Scholar
  99. Jacobs J, Kahana MJ et al (2010) A sense of direction in human entorhinal cortex. Proc Natl Acad Sci U S A 107:6487–6492PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jung MW, Wiener SI et al (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356PubMedPubMedCentralCrossRefGoogle Scholar
  101. Juottonen K, Laakso MP et al (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19(1):15–22PubMedCrossRefGoogle Scholar
  102. Kivisaari SL, Tyler LK et al (2012) Medial perirhinal cortex disambiguates confusable objects. Brain 135:3757–3769PubMedPubMedCentralCrossRefGoogle Scholar
  103. Klein A, Ghosh SS et al (2010) Evaluation of volume-based and surface-based brain image registration methods. NeuroImage 51:214–220PubMedPubMedCentralCrossRefGoogle Scholar
  104. Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Kommissionsverlag von Gebrüder Fretz A.G, ZürichGoogle Scholar
  105. Köhler S, Crane J et al (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12:718–723PubMedCrossRefGoogle Scholar
  106. Köhler S, Danckert S et al (2005) Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus 15:763–774PubMedCrossRefGoogle Scholar
  107. Kravitz DJ, Saleem KS et al (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230PubMedPubMedCentralCrossRefGoogle Scholar
  108. Krimer LS, Hyde TM et al (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731PubMedCrossRefGoogle Scholar
  109. Lashley KS (1929) Brain mechanisms and intelligence: a quantitative study of injuries to the brain. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  110. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430PubMedCrossRefGoogle Scholar
  111. Lavenex P, Suzuki WA et al (2004) Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J Comp Neurol 472:371–394PubMedCrossRefGoogle Scholar
  112. Lee ACH, Barense MD et al (2005) The contribution of the human medial temporal lobe to perception: bridging the gap between animal and human studies. Q J Exp Psychol B 58:300–325PubMedCrossRefGoogle Scholar
  113. Lee ACH, Scahill VL et al (2008) Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb Cortex 18:683–696PubMedCrossRefGoogle Scholar
  114. Leonard BW, Amaral DG et al (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15:5637–5659PubMedPubMedCentralCrossRefGoogle Scholar
  115. Lerch JP, Pruessner JC et al (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001PubMedCrossRefGoogle Scholar
  116. Leutgeb JK, Leutgeb S et al (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRefGoogle Scholar
  117. Lipton PA, Eichenbaum H (2008) Complementary roles of hippocampus and medial entorhinal cortex in episodic memory. Neural Plast 2008:1–8CrossRefGoogle Scholar
  118. Liu Z, Murray EA et al (2000) Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nat Neurosci 3:1307–1315PubMedCrossRefGoogle Scholar
  119. Liu Y, Wang K, Yu C et al (2008) Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46:1648–1656PubMedCrossRefGoogle Scholar
  120. Machulda MM, Ward HA et al (2003) Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 61:500–506PubMedPubMedCentralCrossRefGoogle Scholar
  121. Maguire EA, Frith CD et al (1998) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76PubMedCrossRefGoogle Scholar
  122. Mahut H, Zola-Morgan S et al (1982) Hippocampal resections impair associative learning and recognition memory in the monkey. J Neurosci 2:1214–1220PubMedPubMedCentralCrossRefGoogle Scholar
  123. Maller JJ, Réglade-Meslin C et al (2006) Sex and symmetry differences in hippocampal volumetrics: before and beyond the opening of the crus of the fornix. Hippocampus 16:80–90PubMedCrossRefGoogle Scholar
  124. Malykhin NV, Bouchard TP et al (2007) Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res 155:155–165PubMedCrossRefGoogle Scholar
  125. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639PubMedPubMedCentralCrossRefGoogle Scholar
  126. Meunier M, Bachevalier J et al (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298PubMedCrossRefGoogle Scholar
  128. Mishkin M, Ungerleider LG et al (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRefGoogle Scholar
  129. Mishkin M, Suzuki WA et al (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond B Boil Sci 352:1461–1467CrossRefGoogle Scholar
  130. Montaldi D, Mayes AR (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20:1291–1314PubMedCrossRefGoogle Scholar
  131. Montaldi D, Mayes AR (2011) Familiarity, recollection and medial temporal lobe function: an unresolved issue. Trends Cogn Sci 15:339–340PubMedCrossRefGoogle Scholar
  132. Moscovitch M, Rosenbaum RS et al (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207:35–66PubMedPubMedCentralCrossRefGoogle Scholar
  133. Moser M-B, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619PubMedCrossRefGoogle Scholar
  134. Moss HE, Rodd JM et al (2005) Anteromedial temporal cortex supports fine-grained differentiation among objects. Cereb Cortex 15:616–627PubMedCrossRefGoogle Scholar
  135. Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18:6568–6582PubMedPubMedCentralCrossRefGoogle Scholar
  136. Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11:188–193PubMedCrossRefGoogle Scholar
  137. Murray EA, Malkova L et al (1998) Crossmodal associations, intramodal associations, and object identification in macaque monkeys. In: Milner AD (ed) Comparative neuropsychology. Oxford University Press, Oxford, pp 51–69CrossRefGoogle Scholar
  138. O’Donnell P, Buxton PJ et al (2000) The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol 55:273–280PubMedCrossRefGoogle Scholar
  139. O’Kane G, Kensinger EA et al (2004) Evidence for semantic learning in profound amnesia: an investigation with patient H.M. Hippocampus 14:417–425PubMedCrossRefGoogle Scholar
  140. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175CrossRefGoogle Scholar
  141. O’Neil EB, Cate AD et al (2009) Perirhinal cortex contributes to accuracy in recognition memory and perceptual discriminations. J Neurosci 29:8329–8334PubMedPubMedCentralCrossRefGoogle Scholar
  142. O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682PubMedCrossRefGoogle Scholar
  143. Pantel J, O’Leary DS et al (2000) A new method for the in vivo volumetric measurement of the human hippocampus with high neuroanatomical accuracy. Hippocampus 10:752–758PubMedCrossRefGoogle Scholar
  144. Paterson A, Zancwill OL (1945) A case of topographical disorientation associated with a unilateral cerebral lesion. Brain 68:188–212PubMedCrossRefGoogle Scholar
  145. Petrella JR, Sheldon FC, Prince SE (2011) Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76:511–517PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pihlajamäki M, Tanila H et al (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19:1939–1949PubMedCrossRefGoogle Scholar
  147. Pruessner JC, Li LM et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442PubMedCrossRefGoogle Scholar
  148. Pruessner JC, Köhler S et al (2002) Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. Cereb Cortex 12:1342–1353PubMedCrossRefGoogle Scholar
  149. Qiu C, Kivipelto M et al (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128PubMedPubMedCentralGoogle Scholar
  150. Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20:1263–1290PubMedCrossRefGoogle Scholar
  151. Rémy F, Mirrashed F, Campbell B et al (2005) Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. NeuroImage 25:253–266PubMedCrossRefGoogle Scholar
  152. Rolls ET (2007) An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14:714–731PubMedCrossRefGoogle Scholar
  153. Rombouts SARB, Barkhof F et al (2000) Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 21:1869–1875PubMedGoogle Scholar
  154. Rombouts SARB, Goekoop R, Stam CJ et al (2005) Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. NeuroImage 26:1078–1085PubMedCrossRefGoogle Scholar
  155. Saleem KS, Price JL et al (2007) Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500:973–1006PubMedCrossRefGoogle Scholar
  156. Salmon DP (2011) Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Curr Top Behav Neurosci 179:34–41Google Scholar
  157. Salmon DP, Bondi MW (2009) Neuropsychological assessment of dementia. Annu Rev Psychol 60:257–282PubMedPubMedCentralCrossRefGoogle Scholar
  158. Schmidt CF, Degonda N et al (2005) Sensitivity-encoded (SENSE) echo planar fMRI at 3T in the medial temporal lobe. NeuroImage 25:625–641PubMedCrossRefGoogle Scholar
  159. Schwarzbauer C, Mildner T et al (2010) Dual echo EPI – the method of choice for fMRI in the presence of magnetic field inhomogeneities? NeuroImage 49:316–326PubMedCrossRefGoogle Scholar
  160. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  161. Sewards TV (2011) Adolf Hopf’s 1954 myeloarchitectonic parcellation of the human temporal lobe: a review and assessment. Brain Res Bull 86:298–313PubMedCrossRefGoogle Scholar
  162. Silbert LC, Quinn JF et al (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492PubMedCrossRefGoogle Scholar
  163. Skotko BG, Rubin DC et al (2008) H.M’.s personal crossword puzzles: understanding memory and language. Memory 16:89–96PubMedPubMedCentralCrossRefGoogle Scholar
  164. Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288PubMedPubMedCentralCrossRefGoogle Scholar
  165. Squire LR, Zola SM (1998) Episodic memory, semantic memory and amnesia. Hippocampus 8:205–211PubMedCrossRefGoogle Scholar
  166. Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11:170–175PubMedCrossRefGoogle Scholar
  167. Squire LR, Stark CEL et al (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306PubMedCrossRefGoogle Scholar
  168. Staresina BP, Duncan KD et al (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J Neurosci 31:8739–8747PubMedPubMedCentralCrossRefGoogle Scholar
  169. Steffenach H-A, Witter M et al (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45(2):301–313PubMedCrossRefGoogle Scholar
  170. Supekar K, Menon V, Rubin D et al (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100PubMedPubMedCentralCrossRefGoogle Scholar
  171. Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533PubMedCrossRefGoogle Scholar
  172. Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877PubMedPubMedCentralCrossRefGoogle Scholar
  173. Suzuki WA, Amaral DG (2003a) Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91PubMedCrossRefGoogle Scholar
  174. Suzuki WA, Amaral DG (2003b) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906PubMedCrossRefGoogle Scholar
  175. Suzuki WA, Miller EK et al (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081PubMedCrossRefGoogle Scholar
  176. Takahashi S, Yonezawa H et al (2002) Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett 332:45–48PubMedCrossRefGoogle Scholar
  177. Taylor KI, Monsch AU (2007) The neuropsychology of Alzheimer’s disease. In: Richter RW, Richter BZ (eds) Alzheimer’s disease? The basics. A physician’s guide to the practical management. The Humana Press Inc., TotowaGoogle Scholar
  178. Taylor KI, Probst A (2008) Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol Aging 29:1591–1596PubMedCrossRefGoogle Scholar
  179. Taylor KI, Moss HE et al (2006) Binding crossmodal object features in perirhinal cortex. Proc Natl Acad Sci U S A 103:8239–8244PubMedPubMedCentralCrossRefGoogle Scholar
  180. Taylor KI, Probst A et al (2008) Clinical course of neuropathologically confirmed frontal-variant Alzheimer’s disease. Nat Clin Pract Neurol 4:226–232PubMedCrossRefGoogle Scholar
  181. Taylor KI, Stamatakis EA et al (2009) Crossmodal integration of object features: voxel-based correlations in brain-damaged patients. Brain 132:671–683PubMedCrossRefGoogle Scholar
  182. Taylor KI, Devereux BJ et al (2011a) Conceptual structure: towards an integrated neuro-cognitive account. Lang Cogn Proc 26:1368–1401CrossRefGoogle Scholar
  183. Taylor KI, Kivisaari S et al (2011b) Crossmodal integration of audiovisual objects is related to anteromedial temporal lobe integrity in patients with very early Alzheimer’s disease. In: 287.20 Neuroscience meeting planner. Society for Neuroscience, Washington, D.C.Google Scholar
  184. Thangavel R, Van Hoesen GW et al (2008) Posterior parahippocampal gyrus pathology in Alzheimer’s disease. Neuroscience 154:667–676PubMedPubMedCentralCrossRefGoogle Scholar
  185. Tyler LK, Stamatakis EA et al (2004) Processing objects at different levels of specificity. J Cogn Neurosci 16(3):351–362PubMedCrossRefGoogle Scholar
  186. Tyler LK, Marslen-Wilson W et al (2005) Dissociating neuro-cognitive component processes: voxel-based correlational methodology. Neuropsychologia 43:771–778PubMedCrossRefGoogle Scholar
  187. Van Hoesen GW (1982) The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350CrossRefGoogle Scholar
  188. Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magn Reson Imaging 13:1047–1055PubMedCrossRefGoogle Scholar
  189. Van Hoesen GW, Augustinak JC et al (2000) The parahippocampal gyrus in Alzheimer’s disease: clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911:254–274PubMedCrossRefGoogle Scholar
  190. Vargha-Khadem F, Gadian DG et al (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:376–380PubMedCrossRefGoogle Scholar
  191. Victor M, Adams RD et al (1989) The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition, 2nd edn. F.A. Davis Co, PhiladelphiaGoogle Scholar
  192. Vogt BA, Vogt L et al (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage 29:452–466PubMedCrossRefGoogle Scholar
  193. von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, UrbanaGoogle Scholar
  194. von Economo C, Koskinas GN (1925) Die Cytoarchitecktonik der Grosshirnrinde des erwachsenen Menschen. Springer, BerlinGoogle Scholar
  195. Wallenstein GV, Hasselmo ME et al (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci 21:317–323PubMedCrossRefGoogle Scholar
  196. Wang L, Zang Y et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage 31:496–504PubMedCrossRefGoogle Scholar
  197. Wang W-C, Lazzara MM et al (2010) The medial temporal lobe supports conceptual implicit memory. Neuron 68:835–842PubMedPubMedCentralCrossRefGoogle Scholar
  198. Watson C, Andermann F et al (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743–1750PubMedCrossRefGoogle Scholar
  199. Whiteley AM, Warrington EK (1978) Selective impairment of topographical memory: a single case study. J Neurol Neurosurg Psychiatry 41:575–578PubMedPubMedCentralCrossRefGoogle Scholar
  200. Winblad B, Palmer K et al (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246PubMedCrossRefGoogle Scholar
  201. Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. In: Scharfman HE (ed) The dentate gyrus: a comprehensive guide to structure, function, and clinical implications. Elsevier, Boston, pp 43–61CrossRefGoogle Scholar
  202. Witter MP, Amaral DG (1991) Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437–459PubMedCrossRefGoogle Scholar
  203. Witter MP, Moser EI (2006) Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci 29:671–678PubMedCrossRefGoogle Scholar
  204. Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525PubMedPubMedCentralCrossRefGoogle Scholar
  205. Yonelinas AP (2002) The nature of recollection and familiarity: a review of 30 years of research. J Mem Lang 46:441–517CrossRefGoogle Scholar
  206. Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339PubMedCrossRefGoogle Scholar
  207. Zola-Morgan S, Squire LR et al (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967PubMedPubMedCentralCrossRefGoogle Scholar
  208. Zola-Morgan S, Squire LR et al (1989a) Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. J Neurosci 9:898–913PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zola-Morgan S, Squire LR et al (1989b) Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation. J Neurosci 9:1922–1936PubMedPubMedCentralCrossRefGoogle Scholar
  210. Zola-Morgan S, Squire LR et al (1989c) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sasa L. Kivisaari
    • 1
    Email author
  • Alphonse Probst
    • 2
    • 3
  • Kirsten I. Taylor
    • 4
    • 5
  1. 1.Department of Neuroscience and Biomedical EngineeringAalto UniversityEspooFinland
  2. 2.Department of Geriatrics, Memory ClinicUniversity Hospital BaselBaselSwitzerland
  3. 3.Department of NeuropathologyUniversity Hospital BaselBaselSwitzerland
  4. 4.Neuroscience, Ophthalmology, and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center BaselF. Hoffmann-La Roche LtdBaselSwitzerland
  5. 5.Faculty of PsychologyUniversity of BaselBaselSwitzerland

Personalised recommendations