Advertisement

Prompt and Convenient Preparation of Oral Vaccines Using Yeast Cell Surface Display

  • Seiji ShibasakiEmail author
  • Miki Karasaki
  • Wataru Aoki
  • Mitsuyoshi Ueda
Chapter
  • 83 Downloads
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The budding yeast, Saccharomyces cerevisiae, has been widely used in fermentation technology. In recent, yeast cell surface has been investigated as potential spaces for immobilizing molecules of interest. The technology of yeast cells to display foreign proteins or peptides by genetic manipulation has been called “cell surface engineering (arming technology)” or “molecular display technology.” Here, the yeast molecular display system is described as convenient method to produce an oral vaccine against various infectious diseases. An antigen derived from Candida albicans was successfully displayed, and it was evaluated on an effect in oral vaccination. Additionally, to expand a possibility of the yeast molecular display technology, screening approach on antigens using proteomic analyses is introduced. Useful combination of proteomic analysis and molecular display technology is discussed with practical application.

Keywords

Saccharomyces cerevisiae Cell surface Vaccine Candida albicans 

References

  1. Adachi K, Kawana K, Yokoyama T et al (2010) Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus, (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine 28:2810–2817CrossRefGoogle Scholar
  2. Aoki W, Tatsukami Y, Kitahara N et al (2013) Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics. J Proteome 91:417–429CrossRefGoogle Scholar
  3. Arendrup MC (2013) Candida and candidaemia. Susceptibility and epidemiology. Dan Med J 60(11):B4698PubMedGoogle Scholar
  4. Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216(suppl 3):S445–S451CrossRefGoogle Scholar
  5. Bassetti M, Peghin M, Timsit JF (2016) The current treatment landscape: candidiasis. J Antimicrob Chemother 71(suppl 2):ii13–ii22CrossRefGoogle Scholar
  6. Doerner A, Rhiel L, Zielonka S et al (2014) Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 588(2):278–287CrossRefGoogle Scholar
  7. Hara K, Shigemori T, Kuroda K et al (2012) Membrane-displayed somatostatin activates somatostatin receptor subtype-2 heterologously produced in Saccharomyces cerevisiae. AMB Express 2(1):63CrossRefGoogle Scholar
  8. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11CrossRefGoogle Scholar
  9. Kitahara N, Morisaka H, Aoki W et al (2015) Description of the interaction between Candida albicans and macrophages by mixed and quantitative proteome analysis without isolation. AMB Express 5:127CrossRefGoogle Scholar
  10. Laín A, Moragues MD, Ruiz JC et al (2007) Evaluation of a novel enzyme-linked immunosorbent assay to detect immunoglobulin G antibody to enolase for serodiagnosis of invasive candidiasis. Clin Vaccine Immunol 14(3):318–319CrossRefGoogle Scholar
  11. Lin Y, Shiraga S, Tsumuraya T et al (2004) Comparison of two forms of catalytic antibody displayed on yeast-cell surface. J Mol Catal B Enzym 28:241–246CrossRefGoogle Scholar
  12. Nakamura Y, Shibasaki S, Ueda M et al (2001) Development of novel whole-cell immunoadsorbents by yeast surface display of the IgG-binding domain. Appl Microbiol Biotechnol 57(4):500–505CrossRefGoogle Scholar
  13. Noble SM, Johnson AD (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41:193–211CrossRefGoogle Scholar
  14. Rodríguez I, Chamorro R, Novoa B et al (2009) Beta-glucan administration enhances disease resistance and some innate immune responses in zebrafish (Danio rerio). Fish Shellfish Immunol 27:369–373CrossRefGoogle Scholar
  15. Shibasaki S, Ueda M (2009) Facing challenges for drug discovery using molecular display technology and combinatorial bioengineering. Yakugaku Zasshi 129:1333–1340CrossRefGoogle Scholar
  16. Shibasaki S, Ueda M (2010) Development of yeast molecular display systems focused on therapeutic proteins, enzymes, and foods: functional analysis of proteins and its application to bioconversion. Recent Pat Biotechnol 4(3):198–213CrossRefGoogle Scholar
  17. Shibasaki S, Ueda M (2014) Bioadsorption strategies with yeast molecular display technology. Biocontrol Sci 19(4):157–164CrossRefGoogle Scholar
  18. Shibasaki S, Ueda M (2016) Oral vaccine development by molecular display methods using microbial cells. Methods Mol Biol 1404:497–509CrossRefGoogle Scholar
  19. Shibasaki S, Ueda M (2017) Preparation of an oral vaccine by proteome analysis and molecular display technology. Methods Mol Biol 1625:237–245CrossRefGoogle Scholar
  20. Shibasaki S, Ueda M, Iizuka T et al (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55(4):471–475CrossRefGoogle Scholar
  21. Shibasaki S, Tanaka A, Ueda M (2003) Development of combinatorial bioengineering using yeast cell surface display-order-made design of cell and protein for bio-monitoring. Biosens Bioelectron 19(2):123–130Google Scholar
  22. Shibasaki S, Kuroda K, Duc Nguyen H et al (2006) Detection of protein-protein interactions by a combination of a novel cytoplasmic membrane, targeting system of recombinant proteins and fluorescence resonance energy transfer. Appl Microbiol Biotechnol 70(4):451–457CrossRefGoogle Scholar
  23. Shibasaki S, Kawabata A, Ishii J et al (2007) Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Appl Microbiol Biotechnol 75(4):821–828CrossRefGoogle Scholar
  24. Shibasaki S, Okada J, Nakayama Y et al (2008a) Isolation of bacteria which produce yeast cell wall-lytic enzymes and their characterization. Biocontrol Sci 13:91–96CrossRefGoogle Scholar
  25. Shibasaki S, Sakata K, Ishii J et al (2008b) Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives. Appl Microbiol Biotechnol 80:735–743CrossRefGoogle Scholar
  26. Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast--arming technology. Anal Sci 25:41–49CrossRefGoogle Scholar
  27. Shibasaki S, Aoki W, Nomura T et al (2013) An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog Dis 69(3):262–268CrossRefGoogle Scholar
  28. Shibasaki S, Aoki W, Nomura T et al (2014a) Evaluation of Mdh1 protein as an antigenic candidate for a vaccine against candidiasis. Biocontrol Sci 19(1):51–55CrossRefGoogle Scholar
  29. Shibasaki S, Karasaki M, Gräslund T et al (2014b) Inhibitory effects of H-Ras/Raf-1–binding affibody molecules on synovial cell function. AMB Express 4:82CrossRefGoogle Scholar
  30. Shibasaki S, Karasaki M, Ueda M (2014c) Combining proteomic strategies and molecular display technology for development of vaccines against Candida albicans. J Proteomics Bioinform 7(6):134–138Google Scholar
  31. Shibasaki S, Karasaki M, Aburaya S et al (2016) A comparative proteomics study of a synovial cell line stimulated with TNF-α. FEBS Open Bio 6:418–424CrossRefGoogle Scholar
  32. Shigemori T, Kuroda K, Ueda M (2015) Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system. J Biotechnol 209:96–101CrossRefGoogle Scholar
  33. Ståhl S, Gräslund T, Eriksson Karlström A et al (2017) Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35(8):691–712CrossRefGoogle Scholar
  34. Tsuda K, Nishiya N, Umeyama T et al (2011) Identification of LY83583 as a specific inhibitor of Candida albicans MPS1 protein kinase. Biochem Biophys Res Commun 409(3):418–423CrossRefGoogle Scholar
  35. Ueda M (2016) Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem 80(7):1243–1253CrossRefGoogle Scholar
  36. Xin H, Dziadek S, Bundle DR et al (2008) Synthetic glycopeptide vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A 105(36):13526–13531CrossRefGoogle Scholar
  37. Yasui M, Shibasaki S, Kuroda K et al (2002) An arming yeast with the ability to entrap fluorescent 17beta-estradiol on the cell surface. Appl Microbiol Biotechnol 59(2–3):329–331PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Seiji Shibasaki
    • 1
    Email author
  • Miki Karasaki
    • 1
  • Wataru Aoki
    • 2
  • Mitsuyoshi Ueda
    • 2
  1. 1.General Education Center and Graduate School of Pharmacy, Hyogo University of Health SciencesKobeJapan
  2. 2.Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyotoJapan

Personalised recommendations