Advertisement

Intracortical Electrodes

  • Meijian Wang
  • Liang GuoEmail author
Chapter
  • 130 Downloads

Abstract

Our brain, as an unparallel information processing center, remains one of the largest mysteries of our era. To explore and interface it, implantable electrodes have been designed with a variety of materials and fabrication technologies. These intracortical electrodes have achieved great successes in an ever-expanding research area for more than 70 years and are still under intense developments with the continuously evolving technologies and concepts. This chapter reviews the classic intracortical electrodes, including microwire and micromachined electrodes, with a focus on their designs, fabrications, applications, and challenges.

Notes

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency through Grant # D17AP00031 of the USA and the Chronic Brain Injury Program of The Ohio State University through a Pilot Award. The views, opinions, and/or findings contained in this article are those of the author and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

References

  1. Ainslie, K. M., & Desai, T. A. (2008). Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab on a Chip, 8(11), 1864–1878.  https://doi.org/10.1039/b806446f.CrossRefGoogle Scholar
  2. Bhandari, R., Negi, S., Rieth, L., Normann, R. A., & Solzbacher, F. (2008). A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sensors and Actuators A: Physical, 145–146(1–2), 123–130.  https://doi.org/10.1016/j.sna.2007.10.072.CrossRefGoogle Scholar
  3. Bhandari, R., Negi, S., & Solzbacher, F. (2010). Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomedical Microdevices, 12(5), 797–807.  https://doi.org/10.1007/s10544-010-9434-1.CrossRefGoogle Scholar
  4. Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg, D. A., Nielson, D. M., Sharma, G., Sederberg, P. B., Glenn, B. C., Mysiw, W. J., Morgan, A. G., Deogaonkar, M., & Rezai, A. R. (2016). Restoring cortical control of functional movement in a human with quadriplegia. Nature, 533(7602), 247–250.  https://doi.org/10.1038/nature17435.CrossRefGoogle Scholar
  5. Brandman, D. M., Cash, S. S., & Hochberg, L. R. (2017). Review: Human intracortical recording and neural decoding for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1687–1696.  https://doi.org/10.1109/TNSRE.2017.2677443.CrossRefGoogle Scholar
  6. Burns, B. D., Stean, J. P., & Webb, A. C. (1974). Recording for several days from single cortical neurons in completely unrestrained cats. Electroencephalography and Clinical Neurophysiology, 36(3), 314–318.  https://doi.org/10.1016/0013-4694(74)90175-8.CrossRefGoogle Scholar
  7. Campbell, P. K., Jones, K. E., Huber, R. J., Horch, K. W., & Normann, R. A. (1991). A silicon-based, three-dimensional neural interface: Manufacturing processes for an intracortical electrode array. IEEE Transactions on Biomedical Engineering, 38(8), 758–768.  https://doi.org/10.1109/10.83588.CrossRefGoogle Scholar
  8. Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., Patil, P. G., Henriquez, C. S., & Nicolelis, M. A. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1(2), E42.  https://doi.org/10.1371/journal.pbio.0000042.CrossRefGoogle Scholar
  9. Carter, M., & Shieh, J. C. (2010). Stereotaxic surgeries and in vivo techniques. In Guide to research techniques in neuroscience (pp. 73–90).  https://doi.org/10.1016/B978-0-12-374849-2.00003-3.CrossRefGoogle Scholar
  10. Chang, W. T., Hwang, I. S., Chang, M. T., Lin, C. Y., Hsu, W. H., & Hou, J. L. (2012). Method of electrochemical etching of tungsten tips with controllable profiles. The Review of Scientific Instruments, 83(8), 083704.  https://doi.org/10.1063/1.4745394.CrossRefGoogle Scholar
  11. Chen, Y., Martinez-Conde, S., Macknik, S. L., Bereshpolova, Y., Swadlow, H. A., & Alonso, J. M. (2008). Task difficulty modulates the activity of specific neuronal populations in primary visual cortex. Nature Neuroscience, 11(8), 974–982.  https://doi.org/10.1038/nn.2147.CrossRefGoogle Scholar
  12. Chen, S., Pei, W., Gui, Q., Tang, R., Chen, Y., Zhao, S., Wang, H., & Chen, H. (2013). PEDOT/MWCNT composite film coated microelectrode arrays for neural interface improvement. Sensors and Actuators, A: Physical, 193, 141–148.  https://doi.org/10.1016/j.sna.2013.01.033.CrossRefGoogle Scholar
  13. Coleman, W. L., & Burger, R. M. (2015). Extracellular single-unit recording and Neuropharmacological methods. In Basic electrophysiological methods. Oxford University Press.  https://doi.org/10.1093/med/9780199939800.003.0003
  14. Cyberkinetics. (2005). NeuroPort cortical microelectrode array system (Neuroport Electroe) 510K Summary. https://www.accessdata.fda.gov/cdrh_docs/pdf4/K042384.pdf.
  15. Davalos, D., Grutzendler, J., Yang, G., Kim, J. V., Zuo, Y., Jung, S., Littman, D. R., Dustin, M. L., & Gan, W. B. (2005). ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 8(6), 752–758.  https://doi.org/10.1038/nn1472.CrossRefGoogle Scholar
  16. De Groot, J. (1959). The rat hypothalamus in stereotaxic coordinates. The Journal of Comparative Neurology, 113(3), 389–400.CrossRefGoogle Scholar
  17. Fiebelkorn, I. C., Pinsk, M. A., & Kastner, S. (2019). The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nature Communications, 10(1), 215.  https://doi.org/10.1038/s41467-018-08151-4.CrossRefGoogle Scholar
  18. Filous, A. R., Miller, J. H., Coulson-Thomas, Y. M., Horn, K. P., Alilain, W. J., & Silver, J. (2010). Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC. Developmental Neurobiology, 70(12), 826–841.  https://doi.org/10.1002/dneu.20820.CrossRefGoogle Scholar
  19. Garner, H. E., Amend, J. F., Rosborough, J. P., Geddes, L. A., & Ross, J. N. (1972). Electrodes for recording cortical electroencephalograms in ponies. Laboratory Animal Science, 22(2), 262–265.Google Scholar
  20. Grand, L., Wittner, L., Herwik, S., Göthelid, E., Ruther, P., Oscarsson, S., Neves, H., Dombovári, B., Csercsa, R., Karmos, G., & Ulbert, I. (2010). Short and long term biocompatibility of NeuroProbes silicon probes. Journal of Neuroscience Methods, 189(2), 216–229.  https://doi.org/10.1016/j.jneumeth.2010.04.009.CrossRefGoogle Scholar
  21. Green, R. A., Lovell, N. H., Wallace, G. G., & Poole-Warren, L. A. (2008). Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, 29(24–25), 3393–3399.  https://doi.org/10.1016/j.biomaterials.2008.04.047.CrossRefGoogle Scholar
  22. Grill, W. M., Norman, S. E., & Bellamkonda, R. V. (2009). Implanted neural interfaces: Biochallenges and engineered solutions. Annual Review of Biomedical Engineering, 11, 1–24.  https://doi.org/10.1146/annurev-bioeng-061008-124927.CrossRefGoogle Scholar
  23. Groothuis, J., Ramsey, N. F., Ramakers, G. M. J., & van der Plasse, G. (2014). Physiological challenges for intracortical electrodes. Brain Stimulation, 7(1), 1–6.  https://doi.org/10.1016/j.brs.2013.07.001.CrossRefGoogle Scholar
  24. Grundfest, H., Sengstaken, R. W., Oettinger, W. H., & Gurry, R. W. (1950). Stainless steel micro-needle electrodes made by electrolytic pointing. Review of Scientific Instruments, 21(4), 360–361.  https://doi.org/10.1063/1.1745583.CrossRefGoogle Scholar
  25. He, W., McConnell, G. C., & Bellamkonda, R. V. (2006). Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. Journal of Neural Engineering, 3(4), 316–326.  https://doi.org/10.1088/1741-2560/3/4/009.CrossRefGoogle Scholar
  26. Heiduschka, P., & Thanos, S. (1998). Implantable bioelectric interfaces for lost nerve functions. Progress in Neurobiology, 55(5), 433–461.  https://doi.org/10.1016/s0301-0082(98)00013-6.CrossRefGoogle Scholar
  27. Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.  https://doi.org/10.1038/nature04970.CrossRefGoogle Scholar
  28. Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin, S., Liu, J., Cash, S. S., van der Smagt, P., & Donoghue, J. P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398), 372–U121.  https://doi.org/10.1038/nature11076.CrossRefGoogle Scholar
  29. Hodgkin, A. L., & Katz, B. (1949). The effect of sodium ions on the electrical activity of giant axon of the squid. The Journal of Physiology, 108(1), 37–77.CrossRefGoogle Scholar
  30. Hubel, D. H. (1957). Tungsten microelectrode for recording from single units. Science, 125(3247), 549–550. 125/3247/549 [pii]..  https://doi.org/10.1126/science.125.3247.549.CrossRefGoogle Scholar
  31. Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148, 574–591.  https://doi.org/10.1113/jphysiol.1959.sp006308.CrossRefGoogle Scholar
  32. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.  https://doi.org/10.1113/jphysiol.1962.sp006837.CrossRefGoogle Scholar
  33. Jones, K. E., Campbell, P. K., & Normann, R. A. (1992). A glass/silicon composite intracortical electrode array. Annals of Biomedical Engineering, 20(4), 423–437.  https://doi.org/10.1007/bf02368134.CrossRefGoogle Scholar
  34. Jules, A. (1964). Fabrication of Semiconductor Devices. U.S. Patent No. 3,122,817. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  35. Kaltenbach, J. A., & Gerstein, G. L. (1986). A rapid method for production of sharp tips on preinsulated microwires. Journal of Neuroscience Methods, 16(4), 283–288. 0165-0270(86)90053-1 [pii].CrossRefGoogle Scholar
  36. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41.  https://doi.org/10.1016/j.neuron.2008.11.016.CrossRefGoogle Scholar
  37. Kim, D. H., & Martin, D. C. (2006). Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials, 27(15), 3031–3037.  https://doi.org/10.1016/j.biomaterials.2005.12.021.CrossRefGoogle Scholar
  38. Kim, S. J., Manyam, S. C., Warren, D. J., & Normann, R. A. (2006). Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Annals of Biomedical Engineering, 34(2), 300–309.  https://doi.org/10.1007/s10439-005-9037-9.CrossRefGoogle Scholar
  39. Köhler, P., Wolff, A., Ejserholm, F., Wallman, L., Schouenborg, J., & Linsmeier, C. E. (2015). Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants. PLoS One, 10(3), e0119340.  https://doi.org/10.1371/journal.pone.0119340.CrossRefGoogle Scholar
  40. Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., Moran, J. M., & Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23(13), 2737–2750.  https://doi.org/10.1016/s0142-9612(02)00007-8.CrossRefGoogle Scholar
  41. Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., & Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chemical Neuroscience, 6(1), 48–67.  https://doi.org/10.1021/cn500256e.CrossRefGoogle Scholar
  42. Lashgari, R., Li, X., Chen, Y., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., & Alonso, J. M. (2012). Response properties of local field potentials and neighboring single neurons in awake primary visual cortex. The Journal of Neuroscience, 32(33), 11396–11413.  https://doi.org/10.1523/JNEUROSCI.0429-12.2012.CrossRefGoogle Scholar
  43. Lebedev, M. A., & Nicolelis, M. A. (2017). Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767–837.  https://doi.org/10.1152/physrev.00027.2016.CrossRefGoogle Scholar
  44. Lee, K., Massia, S., & He, J. (2005). Biocompatible benzocyclobutene-based intracortical neural implant with surface modification. Journal of Micromechanics and Microengineering, 15(11), 2149–2155.  https://doi.org/10.1088/0960-1317/15/11/022.CrossRefGoogle Scholar
  45. Lehew, G., & Nicolelis, M. A. L. (2008). State-of-the-art microwire array design for chronic neural recordings in behaving animals. NBK3901 [bookaccession].Google Scholar
  46. Ludwig, K. A., Langhals, N. B., Joseph, M. D., Richardson-Burns, S. M., Hendricks, J. L., & Kipke, D. R. (2011). Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. Journal of Neural Engineering, 8(1), 014001.  https://doi.org/10.1088/1741-2560/8/1/014001.CrossRefGoogle Scholar
  47. Marin, C., & Fernández, E. (2010). Biocompatibility of intracortical microelectrodes: Current status and future prospects. Frontiers in Neuroengineering, 3.  https://doi.org/10.3389/fneng.2010.00008.
  48. Mercanzini, A., Reddy, S. T., Velluto, D., Colin, P., Maillard, A., Bensadoun, J. C., Hubbell, J. A., & Renaud, P. (2010). Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. Journal of Controlled Release, 145(3), 196–202.  https://doi.org/10.1016/j.jconrel.2010.04.025.CrossRefGoogle Scholar
  49. Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65(1), 37–100.  https://doi.org/10.1152/physrev.1985.65.1.37.CrossRefGoogle Scholar
  50. Nicolelis, M. A. (2001). Actions from thoughts. Nature, 409(6818), 403–407.  https://doi.org/10.1038/35053191.CrossRefGoogle Scholar
  51. Normann, R. A., & Fernandez, E. (2016). Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. Journal of Neural Engineering, 13(6), 061003.  https://doi.org/10.1088/1741-2560/13/6/061003.CrossRefGoogle Scholar
  52. O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–428.  https://doi.org/10.1038/381425a0.CrossRefGoogle Scholar
  53. Palmer, C. (1978). A microwire technique for recording single neurons in unrestrained animals. Brain Research Bulletin, 3(3), 285–289.  https://doi.org/10.1016/0361-9230(78)90129-6.CrossRefGoogle Scholar
  54. Pardo-Vazquez, J. L., Leboran, V., & Acuna, C. (2009). A role for the ventral premotor cortex beyond performance monitoring. Proceedings of the National Academy of Sciences of the United States of America, 106(44), 18815–18819.  https://doi.org/10.1073/pnas.0910524106.CrossRefGoogle Scholar
  55. Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th ed.). Amsterdam; Boston: Academic Press/Elsevier.Google Scholar
  56. Reppas, J. B., Usrey, W. M., & Reid, R. C. (2002). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron, 35(5), 961–974.  https://doi.org/10.1016/s0896-6273(02)00823-1.CrossRefGoogle Scholar
  57. Rheinberger, M. B., & Jasper, H. H. (1937). Electrical activity of the cerebral cortex in the unanesthetized cat. American Journal of Physiology, 119(1), 186–196.CrossRefGoogle Scholar
  58. Silva, G. A. (2006). Neuroscience nanotechnology: Progress, opportunities and challenges. Nature Reviews Neuroscience, 7(1), 65–74.  https://doi.org/10.1038/nrn1827.CrossRefGoogle Scholar
  59. Sommakia, S., Lee, H. C., Gaire, J., & Otto, K. J. (2014). Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. Current Opinion in Solid State & Materials Science, 18(6), 319–328.  https://doi.org/10.1016/j.cossms.2014.07.005.CrossRefGoogle Scholar
  60. Spataro, L., Dilgen, J., Retterer, S., Spence, A. J., Isaacson, M., Turner, J. N., & Shain, W. (2005). Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Experimental Neurology, 194(2), 289–300.  https://doi.org/10.1016/j.expneurol.2004.08.037.CrossRefGoogle Scholar
  61. Stiller, A. M., Usoro, J., Frewin, C. L., Danda, V. R., Ecker, M., Joshi-Imre, A., Musselman, K. C., Voit, W., Modi, R., Pancrazio, J. J., & Black, B. J. (2018). Chronic intracortical recording and electrochemical stability of thiol-ene/acrylate shape memory polymer electrode arrays. Micromachines (Basel), 9(10).  https://doi.org/10.3390/mi9100500.
  62. Szarowski, D. H., Andersen, M. D., Retterer, S., Spence, A. J., Isaacson, M., Craighead, H. G., Turner, J. N., & Shain, W. (2003). Brain responses to micro-machined silicon devices. Brain Research, 983(1–2), 23–35.  https://doi.org/10.1016/s0006-8993(03)03023-3.CrossRefGoogle Scholar
  63. Szostak, K. M., Grand, L., & Constandinou, T. G. (2017). Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics. Frontiers in Neuroscience, 11, 665.  https://doi.org/10.3389/fnins.2017.00665.CrossRefGoogle Scholar
  64. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453(7198), 1098–1101.  https://doi.org/10.1038/nature06996.CrossRefGoogle Scholar
  65. Wang, L., Saalmann, Y. B., Pinsk, M. A., Arcaro, M. J., & Kastner, S. (2012). Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron, 76(5), 1010–1020.  https://doi.org/10.1016/j.neuron.2012.09.033.CrossRefGoogle Scholar
  66. Warren, D. J., Fernandez, E., & Normann, R. A. (2001). High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience, 105(1), 19–31.  https://doi.org/10.1016/s0306-4522(01)00174-9.CrossRefGoogle Scholar
  67. Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.  https://doi.org/10.1016/j.biomaterials.2008.04.023.CrossRefGoogle Scholar
  68. Wise, K. D. (2005). Silicon microsystems for neuroscience and neural prostheses. IEEE Engineering in Medicine and Biology Magazine, 24(5), 22–29.  https://doi.org/10.1109/memb.2005.1511497.CrossRefGoogle Scholar
  69. Wise, K. D., Angell, J. B., & Starr, A. (1970). An integrated-circuit approach to extracellular microelectrodes. IEEE Transactions on Biomedical Engineering, BME-17(3), 238–247.  https://doi.org/10.1109/tbme.1970.4502738.CrossRefGoogle Scholar
  70. Wolbarsht, M. L., Macnichol, E. F., Jr., & Wagner, H. G. (1960). Glass insulated platinum microelectrode. Science, 132(3436), 1309–1310.  https://doi.org/10.1126/science.132.3436.1309.CrossRefGoogle Scholar
  71. Zhang J., Xiong H. (2014) Brain Stereotaxic Injection. In Current Laboratory Methods in Neuroscience Research. Springer.  https://doi.org/10.1007/978-1-4614-8794-4_2.
  72. Zhong, Y., & Bellamkonda, R. V. (2007). Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Research, 1148, 15–27.  https://doi.org/10.1016/j.brainres.2007.02.024.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of NeuroscienceThe Ohio State UniversityColumbusUSA

Personalised recommendations