Advertisement

Optogenetics

  • Aaron Argall
  • Liang GuoEmail author
Chapter
  • 119 Downloads

Abstract

The beginning of scientific innovations usually starts by formulating a fundamental question, “can light be used to control a cell?” The original story of optogenetics is inundated with multiple investigators’ research whose impacts have crossed whole continents. Fundamentally, optogenetics is the use of light (opto-) to stimulate encoded proteins (-genetic). Its infancy began by manipulating a single cell but has evolved well beyond deciphering neural circuits to even controlling signaling pathways. In this chapter, we first discuss the roots of optogenetics, framing it in the context of current scientific exploration, followed by the biological mechanism of optogenetics used in the context of neural interface engineering. Finally, we discuss the application of optoelectronic interfaces and project current optogenetic research into future applications.

Keywords

Optogenetics Opsins Optical Neural Interfaces 

Notes

Acknowledgments

This work was supported by the National Science Foundation of USA through Grant # 1749701.

References

  1. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., & Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature, 458, 1025.  https://doi.org/10.1038/nature07926.CrossRefGoogle Scholar
  2. Aravanis, A. M., Wang, L. P., Zhang, F., Meltzer, L. A., Mogri, M. Z., Schneider, M. B., & Deisseroth, K. (2007). An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 4, S143.  https://doi.org/10.1088/1741-2560/4/3/S02.CrossRefGoogle Scholar
  3. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural state switches. Nature Neuroscience, 12, 229.  https://doi.org/10.1038/nn.2247.CrossRefGoogle Scholar
  4. Boesmans, W., Hao, M. M., & Vanden Berghe, P. (2018). Optogenetic and chemogenetic techniques for neurogastroenterology. Nature Reviews Gastroenterology and Hepatology, 15, 21.  https://doi.org/10.1038/nrgastro.2017.151.CrossRefGoogle Scholar
  5. Boyden, E. S. (2011). A history of optogenetics: The development of tools for controlling brain circuits with light. F1000 Biology Reports.  https://doi.org/10.3410/B3-11.
  6. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268.  https://doi.org/10.1038/nn1525.CrossRefGoogle Scholar
  7. Chuong, A. S., Miri, M. L., Busskamp, V., Matthews, G. A. C., Acker, L. C., Sørensen, A. T., et al. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17, 1123.  https://doi.org/10.1038/nn.3752.CrossRefGoogle Scholar
  8. Cohen, A. E. (2016). Optogenetics: Turning the microscope on its head. Biophysical Journal, 110, 997.  https://doi.org/10.1016/j.bpj.2016.02.011.CrossRefGoogle Scholar
  9. Crick, F. (1999). The impact of molecular biology on neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 2021.  https://doi.org/10.1098/rstb.1999.0541.CrossRefGoogle Scholar
  10. Deubner, J., Coulon, P., & Diester, I. (2019). Optogenetic approaches to study the mammalian brain. Current Opinion in Structural Biology, 57, 157.  https://doi.org/10.1016/j.sbi.2019.04.003.CrossRefGoogle Scholar
  11. Erofeev, A., Zakharova, O., Terekhin, S., Plotnikova, P., Bezprozvanny, I., & Vlasova, O. (2016). Future of optogenetics: Potential clinical applications? Opera Medica et Physiologica.  https://doi.org/10.20388/OMP2016.002.0032.
  12. Feil, S., Valtcheva, N., & Feil, R. (2009). Inducible cre mice. Methods in Molecular Biology.  https://doi.org/10.1007/978-1-59745-471-1_18.
  13. Guru, A., Post, R. J., Ho, Y. Y., & Warden, M. R. (2015). Making sense of optogenetics. International Journal of Neuropsychopharmacology, 18, pyv079.  https://doi.org/10.1093/ijnp/pyv079.CrossRefGoogle Scholar
  14. Hägglund, M., Borgius, L., Dougherty, K. J., & Kiehn, O. (2010). Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature Neuroscience, 13, 246.  https://doi.org/10.1038/nn.2482.CrossRefGoogle Scholar
  15. Han, X. (2012). In vivo application of optogenetics for neural circuit analysis. ACS Chemical Neuroscience, 3, 577.  https://doi.org/10.1021/cn300065j.CrossRefGoogle Scholar
  16. Jazayeri, M., Lindbloom-Brown, Z., & Horwitz, G. D. (2012). Saccadic eye movements evoked by optogenetic activation of primate V1. Nature Neuroscience, 15, 1368.  https://doi.org/10.1038/nn.3210.CrossRefGoogle Scholar
  17. Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., et al. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338.  https://doi.org/10.1038/nmeth.2836.CrossRefGoogle Scholar
  18. Lima, S. Q., & Miesenböck, G. (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121, 141.  https://doi.org/10.1016/j.cell.2005.02.004.CrossRefGoogle Scholar
  19. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D., & Tsien, R. Y. (2013). Rea ChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16, 1499.  https://doi.org/10.1038/nn.3502.CrossRefGoogle Scholar
  20. Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381.  https://doi.org/10.1038/nature11028.CrossRefGoogle Scholar
  21. Mahmoudi, P., Veladi, H., & Pakdel, F. G. (2017). Optogenetics, tools and applications in neurobiology. Journal of Medical Signals and Sensors, 7(2), 71–79.CrossRefGoogle Scholar
  22. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., et al. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940.  https://doi.org/10.1073/pnas.1936192100.CrossRefGoogle Scholar
  23. Neves, S. R., Ram, P. T., & Iyengar, R. (2002). G protein pathways. Science, 296, 1636.  https://doi.org/10.1126/science.1071550.CrossRefGoogle Scholar
  24. Piña-Crespo, J. C., Talantova, M., Cho, E. G., Soussou, W., Dolatabadi, N., Ryan, S. D., et al. (2012). High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. Journal of Neuroscience, 32, 15837.  https://doi.org/10.1523/JNEUROSCI.3735-12.2012.CrossRefGoogle Scholar
  25. Rosenbaum, D. M., Rasmussen, S. G. F., & Kobilka, B. K. (2009). The structure and function of G-protein-coupled receptors. Nature, 459, 356.  https://doi.org/10.1038/nature08144.CrossRefGoogle Scholar
  26. Smedemark-Margulies, N., & Trapani, J. G. (2013). Tools, methods, and applications for optophysiology in neuroscience. Frontiers in Molecular Neuroscience, 6.  https://doi.org/10.3389/fnmol.2013.00018.
  27. Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698.  https://doi.org/10.1038/nature07991.CrossRefGoogle Scholar
  28. Warden, M. R., Cardin, J. A., & Deisseroth, K. (2014). Optical neural interfaces. Annual Review of Biomedical Engineering, 16, 103.  https://doi.org/10.1146/annurev-bioeng-071813-104733.CrossRefGoogle Scholar
  29. Wentz, C. T., Bernstein, J. G., Monahan, P., Guerra, A., Rodriguez, A., & Boyden, E. S. (2011). A wirelessly powered and controlled device for optical neural control of freely-behaving animals. Journal of Neural Engineering, 8, 046021.  https://doi.org/10.1088/1741-2560/8/4/046021.CrossRefGoogle Scholar
  30. Yazdan-Shahmorad, A., Diaz-Botia, C., Hanson, T. L., Kharazia, V., Ledochowitsch, P., Maharbiz, M. M., & Sabes, P. N. (2016). A large-scale interface for optogenetic stimulation and recording in nonhuman primates. Neuron, 89, 927.  https://doi.org/10.1016/j.neuron.2016.01.013.CrossRefGoogle Scholar
  31. Zemelman, B. V., Lee, G. A., Ng, M., & Miesenböck, G. (2002). Selective photostimulation of genetically chARGed neurons. Neuron, 33, 15.  https://doi.org/10.1016/S0896-6273(01)00574-8.CrossRefGoogle Scholar
  32. Zhang, F., Vierock, J., Yizhar, O., Fenno, L. E., Tsunoda, S., Kianianmomeni, A., et al. (2011). The microbial opsin family of optogenetic tools. Cell, 147, 1446.  https://doi.org/10.1016/j.cell.2011.12.004.CrossRefGoogle Scholar
  33. Zhao, S., Cunha, C., Zhang, F., Liu, Q., Gloss, B., Deisseroth, K., et al. (2008). Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biology, 36, 141.  https://doi.org/10.1007/s11068-008-9034-7.CrossRefGoogle Scholar
  34. Zhao, S., Ting, J. T., Atallah, H. E., Qiu, L., Tan, J., Gloss, B., et al. (2011). Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 8, 745.  https://doi.org/10.1038/nmeth.1668.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of NeurologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.Department of NeuroscienceThe Ohio State UniversityColumbusUSA

Personalised recommendations