Uniqueness of p-Adic Gibbs Measures for p-Adic \(\lambda \)-Ising Model on Cayley Tree of Arbitrary Order

  • Mutlay DoganEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 317)


In this chapter, we consider an interaction of the nearest-neighbors and next nearest-neighbors for the mixed type p-adic \(\lambda \)-Ising model with spin values \(\left\{ -1,+1\right\} \) on Cayley tree of arbitrary order. We prove the existence and uniqueness of the p-adic Gibbs measures for the mixed type p-adic \(\lambda \)-Ising model on the Cayley tree of arbitrary order.


p-adic numbers Gibbs measures Cayley tree 



The author thanks to Prof. Dr. Farrukh Mukhamedov and Prof. Dr. Hasan Akin for their valuable ideas and supports.


  1. 1.
    Arefeva, I.Y., Dragovic, B.G., Volovich, I.V.: On the p-adic summability of the anharmonic oscillator. Phys. Lett. 200, 512–514 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arefeva, I.Y., Dragovic, B., Frampton, P.H., Volovich, I.V.: The wave function of the universe and \(p\)-adic gravity. Int. J. Mod. Phys. A 6, 4341–4358 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V.: Application of p-adic analysis to models of spontaneous breaking of the replica symmetry. J. Phys. A: Math. Gen. 32, 8785–8791 (1999)CrossRefGoogle Scholar
  4. 4.
    Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)zbMATHGoogle Scholar
  5. 5.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freund, P.G.O., Olson, M.: Non-Archimedean strings. Phys. Lett. B 199, 186–190 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ganikhodjaev, N., Mukhamedov, F., Rozikov, U.: Phase transition of the Ising model on \(\mathbf{z}\) in the \(p\)-adic number field. Uzb. Math. J. 4, 23–29 (1998)MathSciNetGoogle Scholar
  8. 8.
    Khakimov, O.N.: On \(p\)-adic Gibbs measures for Ising model with competing interactions. p-Adic Numbers Ultrametric Anal. Appl. 5, 194–203 (2013)Google Scholar
  9. 9.
    Khrennikov, A.Y., Ludkovsky, S.: Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields. Markov Process. Relat. Fields 9, 131–162 (2003)Google Scholar
  10. 10.
    Khamraev, M., Mukhamedov, F.: On \(p\)-adic \(\lambda \)-model on the Cayley tree. J. Math. Phys. 45, 4025–4034 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Khamraev, M., Mukhamedov, F., Rozikov, U.: On uniqueness of Gibbs measure for \(p\)-adic \(\lambda \)-model on the Cayley tree. Lett. Math. Phys. 70, 17–28 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Khrennikov, A.Y., Mukhamedov, F.M., Mendes, J.F.F.: On p-adic Gibbs measures of the countable state Potts model on the Cayley tree. Nonlinearity 20, 2923 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Koblitz, N.: \(p\)-adic Numbers, \(p\)-adic Analysis and Zeta-Function. Springer, Berlin (1977)CrossRefGoogle Scholar
  14. 14.
    Marinary, E., Parisi, G.: On the \(p\)-adic five points function. Phys. Lett. 203, 52–56 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mukhamedov, F., Saburov, M., Khakimov, O.: On \(p\)-adic Ising-Vannimenus model on an arbitrary order Cayley tree. J. Stat. Mech. P05032 (2015)Google Scholar
  16. 16.
    Mukhamedov, F., Dogan, M., Akin, H.: On chaotic behavior of the \(p\)-adic generalized Ising mapping and its application. J. Differ. Equ. Appl. 23, 1542–1561 (2017)zbMATHGoogle Scholar
  17. 17.
    Mukhamedov, F.: On dynamical systems and phase transitions for \(Q+1\)-state \(p\)-adic Potts model on the Cayley tree. Math. Phys. Anal. Geom. 53, 49–87 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mukhamedov, F., Dogan, M.: On \(p\)-adic \(\lambda \)-model on the Cayley tree II: phase transitions. Rep. Math. Phys. 75, 25–46 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mukhamedov, F., Dogan, M., Akin, H.: Phase transition for the \(p\)-adic Ising-Vannimenus model on the Cayley tree. J. Stat. Mech. P10031 (2014)Google Scholar
  20. 20.
    Shiryaev, A.N.: Probability. Nauka, Moscow (1980)zbMATHGoogle Scholar
  21. 21.
    Snyder, H.S.: Quantized space-time. Phys. Rev. 7, 38 (1947)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Volovich, I.V.: Number theory as the ultimate physical theory. p-Adic Numbers Ultrametric Anal. Appl. 2, 77–87 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Pure and Applied Sciences, School of Mathematics, Physics and TechnologyUniversity of BahamasNassauBahamas

Personalised recommendations