Advertisement

Arachnid Hemocyanins

  • Monica CunninghamEmail author
  • Aldana Laino
  • Sofia Romero
  • C. Fernando Garcia
Chapter
  • 54 Downloads
Part of the Subcellular Biochemistry book series (SCBI, volume 94)

Abstract

Hemocyanin (Hc), a copper-containing extracellular multimeric protein, is the major protein component of hemolymph in different arachnid groups. Hc possesses 7 or 8 very well-characterized types of monomers with molecular weights ranging from 70 to 85 kDa, organized in hexamers or multiple of hexamers. The present chapter compiles the existing data with relation to the function of this protein in the arachnids. Hc has as main function the reversible transport of O2, but it shows many secondary though not less important functions. With reference to this, it has been described that Hc can transport hydrophobic molecules (lipid-derived hormones and lipids) to the different organs, having a key role in the lipid transport system. In arachnids, like in other arthropods and invertebrates, Hc has phenoloxidase function which is related to different metabolic processes such as melanin formation and defense against pathogens. In addition, Hc has additional defensive functions since it can serve as precursor for the production of antimicrobial peptides. In short, the evolution of this protein has led to the development of multiple functions essential for organisms possessing this protein.

Keywords

Arachnids Hemocyanin Oxygen transport Lipid transport Phenoloxidase Hexamers Antimicrobial peptides Immune response 

Notes

Acknowledgements

This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PIP no. 515), UNLP and Agencia Nacional de Promoción Científica y Tecnológica (PICT no. 2017-0684), Argentina. A.L., F.G. and M.C. are researchers of CONICET, Argentina. S.R. is a CONICET scholarship holder. We are very grateful to Rosana del Cid for the review of the manuscript, Mario Ramos for the figure design, and Francisco Giambelluca for the photograph of the spider Latrodectus mirabilis.

References

  1. Ali SA, Grossmann JG, Abbasi A, Voelter W (2007) Structural and conformational analysis of scorpion (Buthus sindicus) hemocyanin using low resolution techniques. Protein Pept Lett 14(5):481–488. https://doi.org/10.2174/092986607780782731CrossRefGoogle Scholar
  2. Averdam A, Markl J, Burmester T (2003) Subunit sequences of the 4 × 6-mer hemocyanin from the golden orb-web spider, Nephila inaurata. Eur J Biochem 270(16):3432–3439. https://doi.org/10.1046/j.1432-1033.2003.03730.x
  3. Baird S, Kelly SM, Price NC, Jaenicke E, Meesters C, Nillius D, Decker H, Nairn J (2007) Hemocyanin conformational changes associated with SDS-induced phenol oxidase activation. Biochim Biophys Acta 1774(11):1380–1394.  https://doi.org/10.1016/j.bbapap.2007.08.019CrossRefPubMedGoogle Scholar
  4. Ballweber P, Markl J, Burmester T (2002) Complete hemocyanin subunit sequences of the hunting spider Cupiennius salei: recent hemocyanin remodeling in entelegyne spiders. J Biol Chem 277(17):14451–14457.  https://doi.org/10.1074/jbc.M111368200CrossRefPubMedGoogle Scholar
  5. Baumann T, Kuhn-Nentwig L, Largiader CR, Nentwig W (2010) Expression of defensins in non-infected araneomorph spiders. Cell Mol Life Sci 67(15):2643–2651.  https://doi.org/10.1007/s00018-010-0354-2CrossRefPubMedGoogle Scholar
  6. Bridges CR (1988) The haemocyanin of the tarantula Lasiodora erythrocythara—the influence of C02, organic cofactors and temperature on oxygen affinity. Comp Biochem Physiol 89(4):661–667Google Scholar
  7. Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184. https://doi.org/10.1111/j.0105-2896.2004.0124.xCrossRefGoogle Scholar
  8. Burmester T (2013) Evolution and adaptation of hemocyanin within spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 3–14CrossRefGoogle Scholar
  9. Cerenius L, Kawabata S, Lee BL, Nonaka M, Soderhall K (2010) Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 35(10):575–583.  https://doi.org/10.1016/j.tibs.2010.04.006CrossRefPubMedGoogle Scholar
  10. Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126. https://doi.org/10.1111/j.0105-2896.2004.00116.xCrossRefGoogle Scholar
  11. Coates CJ, Decker H (2017) Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 74(2):293–317.  https://doi.org/10.1007/s00018-016-2326-7CrossRefPubMedGoogle Scholar
  12. Coates CJ, Nairn J (2014) Diverse immune functions of hemocyanins. Dev Comp Immunol 45(1):43–55.  https://doi.org/10.1016/j.dci.2014.01.021CrossRefPubMedGoogle Scholar
  13. Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H (2009) Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure 17(5):749–758.  https://doi.org/10.1016/j.str.2009.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  14. Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T (2002) Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem 277(26):23627–23637.  https://doi.org/10.1074/jbc.M200511200CrossRefPubMedGoogle Scholar
  15. Cunningham M, Garcia F, Pollero RJ (2007) Arachnid lipoproteins: comparative aspects. Comp Biochem Physiol Part C Toxicol Pharmcol 146(1–2):79–87.  https://doi.org/10.1016/j.cbpc.2006.06.011CrossRefGoogle Scholar
  16. Cunningham M, Gomez C, Pollero R (1999) Lipid binding capacity of spider hemocyanin. J Exp Zool 284(4):368–373. https://doi.org/10.1002/(SICI)1097-010X(19990901)284:4<368::AID-JEZ2>3.0.CO;2-ICrossRefGoogle Scholar
  17. Cunningham M, Gonzalez A, Pollero RJ (2000) Characterization of lipoproteins isolated from the hemolymph of the spider Latrodectus mirabilis (Araneae, Theridiidae). J Arachnol 28:49–55CrossRefGoogle Scholar
  18. Cunningham M, Pollero RJ (1996) Characterization of lipoprotein fractions with high content of hemocyanin in the hemolymphatic plasma of Polybetes pythagoricus. J Exp Zool 274(5):275–280.  https://doi.org/10.1002/(SICI)1097-010X(19960401)274:5<275::AID-JEZ2>3.0.CO;2-MCrossRefGoogle Scholar
  19. Decker H (1990) Nested allostery in scorpion hemocyanin (Pandinus imperator). Biophys Chem 37(1–3):257–263.  https://doi.org/10.1016/0301-4622(90)88025-NCrossRefPubMedGoogle Scholar
  20. Decker H, Jaenicke E (2004) Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev Comp Immunol 28(7–8):673–687.  https://doi.org/10.1016/j.dci.2003.11.007CrossRefPubMedGoogle Scholar
  21. Decker H, Rimke T (1998) Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem 273(40):25889–25892.  https://doi.org/10.1074/jbc.273.40.25889CrossRefPubMedGoogle Scholar
  22. Decker H, Ryan M, Jaenicke E, Terwilliger N (2001) SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem 276(21):17796–17799.  https://doi.org/10.1074/jbc.M010436200CrossRefPubMedGoogle Scholar
  23. Decker H, Sterner R (1990) Nested allostery of arthropodan hemocyanin (Eurypelma californicum and Homarus americanus). The role of protons. J Mol Biol 211(1):281–293.  https://doi.org/10.1016/0022-2836(90)90027-j
  24. Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272(45):28398–28406. https://doi.org/10.1074/jbc.272.45.28398CrossRefGoogle Scholar
  25. Destoumieux-Garzon D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachere E (2001) Crustacean immunity antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276(50):47070–47077.  https://doi.org/10.1074/jbc.m103817200
  26. Ehret-Sabatier L, Loew D, Goyffon M, Fehlbaum P, Hoffmann JA, van Dorsselaer A, Bulet P (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 271(47):29537–29544. https://doi.org/10.1074/jbc.271.47.29537CrossRefGoogle Scholar
  27. Espin JC, Wichers HJ (1999) Activation of a latent mushroom (Agaricus bisporus) tyrosinase isoform by sodium dodecyl sulfate (SDS). Kinetic properties of the SDS-activated isoform. J Agric Food Chem 47(9):3518–3525. https://doi.org/10.1021/jf981275p
  28. Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  29. Fogaca AC, da Silva PI Jr, Miranda MT, Bianchi AG, Miranda A, Ribolla PE, Daffre S (1999) Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. J Biol Chem 274(36):25330–25334. https://doi.org/10.1074/jbc.274.36.25330CrossRefGoogle Scholar
  30. Franz-Guess S, Starck JM (2016) Histological and ultrastructural analysis of the respiratory tracheae of Galeodes granti (Chelicerata: Solifugae). Arthropod Struct Dev 45(5):452–461.  https://doi.org/10.1016/j.asd.2016.08.003CrossRefPubMedGoogle Scholar
  31. Goldfeder M, Kanteev M, Adir N, Fishman A (2013) Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochim Biophys Acta 1834(3):629–633.  https://doi.org/10.1016/j.bbapap.2012.12.021
  32. Grossmann JG, Ali SA, Abbasi A, Zaidi ZH, Stoeva S, Voelter W, Hasnain SS (2000) Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. Biophys J 78(2):977–981.  https://doi.org/10.1016/S0006-3495(00)76655-0 [pii]
  33. Hall M, van Heusden MC, Soderhall K (1995) Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochem Biophys Res Commun 216(3):939–946.  https://doi.org/10.1006/bbrc.1995.2711CrossRefPubMedGoogle Scholar
  34. Hartmann H, Decker H (2002) All hierarchical levels are involved in conformational transitions of the 4 × 6-meric tarantula hemocyanin upon oxygenation. Biochim Biophys Acta 1601(2):132–137. https://doi.org/10.1016/s1570-9639(02)00459-4CrossRefGoogle Scholar
  35. Heras H, Pollero RJ (1990) Occurrence of plasma lipoproteins in octopods. Partial characterization and interorgan transport of lipids. J Exp Mar Biol Ecol 140:29–38CrossRefGoogle Scholar
  36. Heras H, Pollero RJ (1992) Hemocyanin as an apolipoprotein in the hemolymph of the cephalopod Octopus tehuelchus. Biochim Biophys Acta 1125:245–550CrossRefGoogle Scholar
  37. Iwanaga S, Kawabata S (1998) Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci 3:D973–D984. https://doi.org/10.2741/a337CrossRefGoogle Scholar
  38. Jaenicke E, Decker H (2008) Kinetic properties of catecholoxidase activity of tarantula hemocyanin. FEBS J 275(7):1518–1528.  https://doi.org/10.1111/j.1742-4658.2008.06311.xCrossRefPubMedGoogle Scholar
  39. Jaenicke R (1999) Stability and folding of domain proteins. Prog Biophys Mol Biol 71(2):155–241. https://doi.org/10.1016/s0079-6107(98)00032-7CrossRefGoogle Scholar
  40. Khoo L, Robinette DW, Noga EJ (1999) callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Mar Biotechnol (NY) 1(1):44–51. https://doi.org/10.1007/pl00011750
  41. Kuhn-Nentwig L, Muller J, Schaller J, Walz A, Dathe M, Nentwig W (2002) Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 277(13):11208–11216.  https://doi.org/10.1074/jbc.M111099200CrossRefPubMedGoogle Scholar
  42. Lai R, Lomas LO, Jonczy J, Turner PC, Rees HH (2004) Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, amblyomma hebraeum. Biochem J 379(Pt 3):681–685.  https://doi.org/10.1042/BJ20031429CrossRefPubMedPubMedCentralGoogle Scholar
  43. Laino A, Cunningham ML, Garcia F, Heras H (2009) First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins. J Insect Physiol 55(12):1118–1124.  https://doi.org/10.1016/j.jinsphys.2009.08.005CrossRefPubMedGoogle Scholar
  44. Laino A, Cunningham ML, Heras H, Garcia F (2011) In vitro lipid transfer between lipoproteins and midgut-diverticula in the spider Polybetes pythagoricus. Comp Biochem Physiol 160(4):181–186.  https://doi.org/10.1016/j.cbpb.2011.08.003CrossRefGoogle Scholar
  45. Laino A, Cunningham M, Suarez G, Garcia CF (2015a) Identification and characterization of the lipid transport system in the tarantula Grammostola rosea. OJAS 5(1):9–20.  https://doi.org/10.4236/ojas.2015.51002CrossRefGoogle Scholar
  46. Laino A, Lavarias S, Suarez G, Lino A, Cunningham M (2015b) Characterization of phenoloxidase activity from spider Polybetes pythagoricus hemocyanin. J Exp Zool 323(8):547–555.  https://doi.org/10.1002/jez.1947CrossRefGoogle Scholar
  47. Lamy J, Bijlholt MC, Sizaret PY, van Bruggen EF (1981) Quaternary structure of scorpion (Androctonus australis) hemocyanin. Localization of subunits with immunological methods and electron microscopy. Biochem 20(7):1849–1856. https://doi.org/10.1021/bi00510a021
  48. Lamy J, Bonaventura J, Bonaventura C (1980) Structure, function, and assembly in the hemocyanin system of the scorpion Androctonus australis. Biochem 19(13):3033–3039. https://doi.org/10.1021/bi00554a031CrossRefGoogle Scholar
  49. Lee SY, Lee BL, Soderhall K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278(10):7927–7933.  https://doi.org/10.1074/jbc.M209239200CrossRefPubMedGoogle Scholar
  50. Linzen B, Soeter NM, Riggs AF, Schneider HJ, Schartau W, Moore MD, Yokota E, Behrens PQ, Nakashima H, Takagi T et al (1985) The structure of arthropod hemocyanins. Science 229(4713):519–524. https://doi.org/10.1126/science.4023698CrossRefGoogle Scholar
  51. Loewe R (1978) Hemocyanin in spiders. V. Fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions in Eurypelma californicum hemocyanin. J Comp Physiol 128:161–168CrossRefGoogle Scholar
  52. Loewe R, Linzen B (1975) Haemocyanins in spiders. II. Automatic recording of oxygen binding curves, and the effect of Mg ++ on oxygen affinity, cooperativity, and subunit association of Cupiennius salei haemocyanin. J Comp Physiol 98:147–156CrossRefGoogle Scholar
  53. Lorenzini DM, da Silva PI Jr, Fogaca AC, Bulet P, Daffre S (2003) Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Dev Comp Immunol 27(9):781–791. doi:S0145305X03000582 [pii]Google Scholar
  54. Markl J (1980) Hemocyanins in spiders. XI. The quaternary structure of Cupiennius hemocyanin. J Comp Physiol B 140:199–207CrossRefGoogle Scholar
  55. Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol Bull 171:90–115CrossRefGoogle Scholar
  56. Markl J (2013) Evolution of molluscan hemocyanin structures. Biochim Biophys Acta 1834(9):1840–1852.  https://doi.org/10.1016/j.bbapap.2013.02.020CrossRefPubMedGoogle Scholar
  57. Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins, vol 13. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-76418-9_12
  58. Markl J, Schmid R, Czichos-Tiedt S, Linzen B (1976) Haemocyanins in spiders, III. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe Seylers Z Physiol Chem 357(12):1713–1725Google Scholar
  59. Markl J, Stöcker W, Runzler R, Precht E (1986) Immunological correspondences between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, Heidelberg, pp 281–292.  https://doi.org/10.1007/978-3-642-71481-8_50
  60. Martin AG, Depoix F, Stohr M, Meissner U, Hagner-Holler S, Hammouti K, Burmester T, Heyd J, Wriggers W, Markl J (2007) Limulus polyphemus hemocyanin: 10 A cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. J Mol Biol 366(4):1332–1350.  https://doi.org/10.1016/j.jmb.2006.11.075CrossRefPubMedGoogle Scholar
  61. Nentwig W (2012) The species referred to as Eurypelma californicum (Theraphosidae) in more than 100 publications is likely to be Aphonopelma hentzi. J Arachnol 40:128–130.  https://doi.org/10.2307/41804580CrossRefGoogle Scholar
  62. Nillius D, Jaenicke E, Decker H (2008) Switch between tyrosinase and catecholoxidase activity of scorpion hemocyanin by allosteric effectors. FEBS Lett 582(5):749–754.  https://doi.org/10.1016/j.febslet.2008.01.056CrossRefPubMedGoogle Scholar
  63. Paul R, Bergner B, Pfeffer-Seidl A, Decker H, Efinger R, Storz H (1994) Gas transport in the Haemolymph of Arachnids-Oxygen transport and the physiological role of Haemocyanin. J Exp Biol 188(1):25–46PubMedGoogle Scholar
  64. Rehm P, Pick C, Borner J, Markl J, Burmester T (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evol Biol 12:19.  https://doi.org/10.1186/1471-2148-12-19CrossRefPubMedPubMedCentralGoogle Scholar
  65. Riciluca KC, Silva PI (2012) Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results Immunol 2:66–71.  https://doi.org/10.1016/j.rinim.2012.03.001CrossRefPubMedPubMedCentralGoogle Scholar
  66. Salvato B, Beltramini M (1990) Hemocyanins: molecular architecture, structure and reactivity of binuclear copper active site. Life Chem Rep 8:1–47Google Scholar
  67. Sanggaard KW, Dyrlund TF, Bechsgaard JS, Scavenius C, Wang T, Bilde T, Enghild JJ (2016) The spider hemolymph clot proteome reveals high concentrations of hemocyanin and von Willebrand factor-like proteins. Biochim Biophys Acta 1864(2):233–241.  https://doi.org/10.1016/j.bbapap.2015.11.004
  68. Savel-Niemann A, Markl J, Linzen B (1988) Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates. J Mol Biol 204(2):385–395.  https://doi.org/10.1016/0022-2836(88)90583-9
  69. Schenk S, Schmidt J, Hoeger U, Decker H (2015) Lipoprotein-induced phenoloxidase-activity in tarantula hemocyanin. Biochim Biophys Acta 1854(8):939–949.  https://doi.org/10.1016/j.bbapap.2015.03.006
  70. Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab Carcinus maenas. Eur J Biochem 240(3):532–539. https://doi.org/10.1111/j.1432-1033.1996.0532h.xCrossRefGoogle Scholar
  71. Silva PI Jr, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275(43):33464–33470.  https://doi.org/10.1074/jbc.M001491200CrossRefPubMedGoogle Scholar
  72. Smith VJ (2010) Immunology of Invertebrates: Cellular. Encyclopedia of life sciences (ELS), Chichester.  https://doi.org/10.1002/9780470015902.a0002344.pub3
  73. Schmitz A (2013) Tracheae in spiders—respiratory organs for special functions. In: Nentwig W (ed) Spider ecophysiology. Springer, HeidelbergGoogle Scholar
  74. Starrett J, Hedin M, Ayoub N, Hayashi CY (2013) Hemocyanin gene family evolution in spiders (Araneae), with implications for phylogenetic relationships and divergence times in the infraorder Mygalomorphae. Gene 524(2):175–186.  https://doi.org/10.1016/j.gene.2013.04.037CrossRefPubMedGoogle Scholar
  75. Terwilliger NB, Ryan MC (2006) Functional and phylogenetic analyses of phenoloxidases from brachyuran (Cancer magister) and branchiopod (Artemia franciscana, Triops longicaudatus) crustaceans. Biol Bull 210(1):38–50.  https://doi.org/10.2307/4134535CrossRefPubMedGoogle Scholar
  76. Van Bruggen EFJ, Bijlholt MMC, Schutter WG, Wichertjes T, Bonaventura J, Bonaventura C, Lamy J, Lamy J, Leclerc M, Schneider H-J, Markl J, Linzen B (1980) The role of structurally diverse subunits in the assembly of three cheliceratan hemocyanins. FEBS Lett 116:207–210CrossRefGoogle Scholar
  77. van Holde KE, Miller KI (1982) Haemocyanins. Q Rev Biophys 15(1):1–129CrossRefGoogle Scholar
  78. van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81.  https://doi.org/10.1016/S0065-3233(08)60545-8CrossRefPubMedGoogle Scholar
  79. van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276(19):15563–15566.  https://doi.org/10.1074/jbc.R100010200CrossRefPubMedGoogle Scholar
  80. Voit R, Feldmaier-Fuchs G, Schweikardt T, Decker H, Burmester T (2000) Complete sequence of the 24-mer hemocyanin of the tarantula Eurypelma californicum. Structure and intramolecular evolution of the subunits. J Biol Chem 275(50):39339–39344.  https://doi.org/10.1074/jbc.m005442200

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Monica Cunningham
    • 1
    Email author
  • Aldana Laino
    • 1
  • Sofia Romero
    • 1
  • C. Fernando Garcia
    • 1
  1. 1.INIBIOLP (CONICET-UNLP) - Facultad de Ciencias Médicas, UNLPLa PlataArgentina

Personalised recommendations