Advertisement

Reactive Intermediates Generated from Bioactivation

  • Chang-Hwei Chen
Chapter
  • 31 Downloads

Abstract

The increased toxicity of metabolic intermediates or metabolites is primarily the results of the conversion of xenobiotics into chemically reactive species such as reactive oxygen/nitrogen species, free radicals, or positively or neutral charged electrophiles. Electrophilic intermediates are consisted of nonionic and cationic species. Nonionic electrophilic intermediates are such as aldehydes, ketones, epoxides, quinones, sulfoxides, nitroso compounds, and acyl halides, while cationic electrophilic intermediates include carbonium ions and nitrenium ions. Chemically reactive species can interact with proteins, DNA, and lipids, leading to protein adducts, DNA adducts, and lipid peroxidation.

Bibliography

  1. Amacher DE (2006) Reactive intermediates and the pathogenesis of adverse drug reactions: the toxicology perspective. Curr Drug Metab 7:219–229PubMedCrossRefGoogle Scholar
  2. Anders MW (2007) Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Chem Res Toxicol 21:145–159PubMedCrossRefGoogle Scholar
  3. Anders MW (1985) Bioactivation of foreign compounds. Academic, New YorkGoogle Scholar
  4. Anderson D (2001) Genetic and reproductive toxicity of butadiene and isoprene. Chem Biol Interact 135–136:65–80PubMedCrossRefGoogle Scholar
  5. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114PubMedCrossRefGoogle Scholar
  6. Boelsterli UA (2007) Mechanistic toxicology. CRC Press, Boca RatonCrossRefGoogle Scholar
  7. Boelsterli UA, Ho HK, Zhou S, Leow KY (2006) Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr Drug Metab 7(7):715–727PubMedCrossRefGoogle Scholar
  8. Bogdanffy MS, Taylor ML (1993) Kinetics of nasal carboxylesterase-mediated metabolism of vinyl acetate. Drug Metab Dispos 21:1107–1111PubMedGoogle Scholar
  9. Bolton JL (2002) Quinoids, quinoid radicals, and phenoxyl radicals formed from estrogens and antiestrogens. Toxicology 177(1):55–65PubMedCrossRefGoogle Scholar
  10. Boyd JA, Eling TE (1987) Prostaglandin H synthase-catalyzed metabolism and DNA binding of 2-naphthylamine. Cancer Res 47(15):4007–4014PubMedGoogle Scholar
  11. Chandrasekara A, Shahidi F (2011) Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J Agric Food Chem 59:428–436PubMedCrossRefGoogle Scholar
  12. Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New YorkCrossRefGoogle Scholar
  13. Dekant W, Vamvakas S (1993) Glutathione-dependent bioactivation of xenobiotics. Xenobiotica 23:873–887PubMedCrossRefGoogle Scholar
  14. Dietz BM, Bolton JL (2011) Biological reactive intermediates (BRIs) formed from botanical dietary supplements. Chem Biol Interact 192:72–80PubMedCrossRefGoogle Scholar
  15. Eaton DL, Gallagher EP (1994) Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol 34:135–172PubMedCrossRefGoogle Scholar
  16. Furst SM, Uetrecht JP (1995) The effect of carbamazepine and its reactive metabolite, 9-acridine carboxaldehyde, on immune cell function in vitro. Int J Immunopharmacol 17(5):445–452PubMedCrossRefGoogle Scholar
  17. Glatt H (2000) Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170PubMedCrossRefGoogle Scholar
  18. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14:611–650PubMedCrossRefGoogle Scholar
  19. Hinson JA, Forkert PG (1995) Phase II enzymes and bioactivation. Can J Physiol Pharmacol 73:1407–1413PubMedCrossRefGoogle Scholar
  20. James LP, Capparelli EV, Simpson PM et al (2008) Acetaminophen-associated hepatic injury: evaluation of acetaminophen protein adducts in children and adolescents with acetaminophen overdose. Clin Pharmacol Ther 84:684–690PubMedPubMedCentralCrossRefGoogle Scholar
  21. Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EM, Anderson DG, Doorn JA (2011) Dopamine-derived biological reactive intermediates and protein modifications: implications for Parkinson’s disease. Chem Biol Interact 192(1-2):118–121PubMedPubMedCentralCrossRefGoogle Scholar
  22. Johnson WW (2008) Many drugs and phytochemicals can be activated to biological reactive intermediates. Curr Drug Metab 9(4):344–351PubMedCrossRefGoogle Scholar
  23. Kalgutkar AS, Dalvie DK, O’Donnell JP et al (2002) On the diversity of oxidative bioactivation reactions on nitrogen-containing xenobiotics. Curr Drug Metab 3:379–424PubMedCrossRefGoogle Scholar
  24. Khojasteh SC, Hartley DP, Ford KA, Uppal H, Oishi S, Nelson SD (2012) Characterization of rat liver proteins adducted by reactive metabolites of menthofuran. Chem Res Toxicol 25(11):2301–2309PubMedCrossRefGoogle Scholar
  25. Kim SY, Suzuki N, Laxmi YR et al (2004) Genotoxic mechanism of tamoxifen in developing endometrial cancer. Drug Metab Rev 36:199–218PubMedCrossRefGoogle Scholar
  26. Khojasteh SC, Hartley DP, Ford KA, Uppal H, Oishi S, Nelson SD (2012) Characterization of rat liver proteins adducted by reactive metabolites of menthofuran. Chem Res Toxicol 25(11):2301–2309PubMedCrossRefGoogle Scholar
  27. Koob M, Dekant W (1991) Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chem Biol Interact 77:107–136PubMedCrossRefGoogle Scholar
  28. Korobkova EA, Nemeth J, Cadougan M, Venkatratnam A, Bassit M, Azar N (2012) Reactive metabolites of desipramine and clomipramine: the kinetics of formation and reactivity with DNA. Bioorg Med Chem 20(1):340–345PubMedCrossRefGoogle Scholar
  29. Levi PE, Hodgson E (2008) Reactive metabolites and toxicity. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology. Wiley, New YorkGoogle Scholar
  30. Mao J, Dai W, Zhang S, Sun L, Wang H, Gao Y, Wang J, Zhang F (2019) Quinone-thioether metabolites of hydroquinone play a dual role in promoting a vicious cycle of ROS generation: in vitro and in silico insights. Arch Toxicol 93(5):1297–1309PubMedCrossRefGoogle Scholar
  31. McLemore TL, Litterst CL, Coudert BP et al (1990) Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines. J Natl Cancer Inst 82:1420–1426PubMedCrossRefGoogle Scholar
  32. Medower C, Wen L, Johnson WW (2008) Cytochrome P450 oxidation of the thiophene-containing anticancer drug 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy- phenyl)-amide to an electrophilic intermediate. Chem Res Toxicol 21(8):1570–1577PubMedCrossRefGoogle Scholar
  33. O’Donnell JP, Dalvie DK, Kalgutkar AS, Obach RS (2003) Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab Dispos 31(11):1369–1377PubMedCrossRefGoogle Scholar
  34. Perlow RA, Kolbanovskii A, Hingerty BE et al (2002) DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J Mol Biol 321:29–47PubMedCrossRefGoogle Scholar
  35. Phillips MB, Sullivan MM, Villalta PW, Peterson LA (2014) Covalent modification of cytochrome c by reactive metabolites of furan. Chem Res Toxicol 27(1):129–135PubMedCrossRefGoogle Scholar
  36. Raucy JL, Kraner JC, Lasker JM (1993) Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit Rev Toxicol 23:1–20PubMedCrossRefGoogle Scholar
  37. Reilly CA, Henion F, Bugni TS, Ethirajan M, Stockmann C, Pramanik KC, Srivastava SK, Yost GS (2013) Reactive intermediates produced from metabolism of the vanilloid ring of capsaicinoids by P450 enzymes. Chem Res Toxicol 26(1):55–66PubMedCrossRefGoogle Scholar
  38. Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193PubMedCrossRefGoogle Scholar
  39. Shimada T (2006) Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet 21:257–276PubMedCrossRefGoogle Scholar
  40. Smart RC, Hodgson E (2008) Molecular and biochemical toxicology. Wiley, New YorkCrossRefGoogle Scholar
  41. Smith BJ, Curtis JF, Eling TE (1991) Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact 79:245–264PubMedCrossRefGoogle Scholar
  42. Sridar C, D’Agostino J, Hollenberg PF (2012) Bioactivation of the cancer chemopreventive agent tamoxifen to quinone methides by cytochrome P4502B6 and identification of the modified residue on the apoprotein. Drug Metab Dispos 40(12):2280–2288PubMedPubMedCentralCrossRefGoogle Scholar
  43. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258PubMedCrossRefGoogle Scholar
  44. Stiborova M, Schmeiser HH, Frei E, Hodek P, Martinek V (2014) Enzymes oxidizing the azo dye 1- phenylazo-2-naphthol (Sudan I) and their contribution to its genotoxicity and carcinogenicity. Curr Drug Metab 15(8):829–840PubMedCrossRefGoogle Scholar
  45. Thompson DC, Eling TE (1991) Reactive intermediates formed during the peroxidative oxidation of anisidine isomers. Chem Res Toxicol 4(4):474–481PubMedCrossRefGoogle Scholar
  46. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  47. Weems JM, Lamb JG, D’Agostino J, Ding X, Yost GS (2010) Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation: a comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chem Res Toxicol 23(11):1682–1690PubMedPubMedCentralCrossRefGoogle Scholar
  48. Zhou S, Koh HL, Gao Y, Gong ZY, Lee EJ (2004) Herbal bioactivation: the good, the bad and the ugly. Life Sci 74(8):935–968PubMedCrossRefGoogle Scholar
  49. Zhou SF, Xue CC, Yu XQ, Wang G (2007) Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: an update. Curr Drug Metab 8(6):526–553PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chang-Hwei Chen
    • 1
  1. 1.Institute for Health and the Environment and Department of Biomedical SciencesUniversity at Albany, State University of New York, 5 University PlaceRensselaerUSA

Personalised recommendations