Nrf2-ARE Pathway: Defense Against Oxidative Stress

  • Chang-Hwei Chen


Oxidative stress occurs when the production of reactive chemical intermediates during bioactivation exceeds the ability of metabolic detoxification enzymes and endogenous antioxidants to neutralize them. To maintain the balance between bioactivation and detoxification, living cells maintain an inducible antioxidant response pathway, which activity is largely regulated by nuclear factor erythroid-2-related factor 2 (Nrf2). Nrf2 governs the expression of many detoxification enzymes and antioxidants and acts as a sensor of oxidative stress. Nrf2 complex binds to antioxidant response elements (ARE). Nrf2-Keap1-ARE pathways in the absence and presence of oxidative stress are presented. Cytoprotection and induction of Nrf2-ARE pathway are also discussed.


  1. Bayele HK, Debnam ES, Srai KS (2016) Nrf2 transcriptional derepression from Keap1 by dietary polyphenols. Biochem Biophys Res Commun 469:521–528CrossRefGoogle Scholar
  2. Bianco NR, Chaplin LJ, Montano MM (2005) Differential induction of quinone reductase by phytoestrogens and protection against oestrogen-induced DNA damage. Biochem J 385:279–287CrossRefGoogle Scholar
  3. Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85(6):705–717CrossRefGoogle Scholar
  4. Buendia I, Michalska P, Navarro E, Gameiro I, Egea J, León R (2016) Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 157:84–104CrossRefGoogle Scholar
  5. Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer Sciences, New YorkCrossRefGoogle Scholar
  6. Copple IM, Goldring CE, Kitteringham NR, Park BK (2010) The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol 196:233–266CrossRefGoogle Scholar
  7. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 45(10):1375–1383CrossRefGoogle Scholar
  8. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2- ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69CrossRefGoogle Scholar
  9. Joshi G, Johnson JA (2012) The Nrf2-ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7(3):218–229CrossRefGoogle Scholar
  10. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2(Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309CrossRefGoogle Scholar
  11. Kensler TW, Curphey TJ, Maxiutenko Y, Roebuck BD (2000) Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins. Drug Metabol Drug Interact 17:3–22CrossRefGoogle Scholar
  12. Keum YS (2011) Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann N Y Acad Sci 1229:184–189CrossRefGoogle Scholar
  13. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W (2017) The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment. Pharmacol Rep 69(3):393–402CrossRefGoogle Scholar
  14. Kwak MK, Egner PA, Dolan PM, Ramos-Gomez M, Groopman JD, Itoh K, Yamamoto M, Kensler TW (2001) Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res 480–481:305–315CrossRefGoogle Scholar
  15. Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143PubMedPubMedCentralGoogle Scholar
  16. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184CrossRefGoogle Scholar
  17. Li J, Calkins MJ, Johnson DA, Johnson JA (2007) Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection. Methods Mol Biol 399:67–78CrossRefGoogle Scholar
  18. Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, Kong AN (2016) Dietary phytochemicals and cancer chemoprevention: a perspective on oxidative stress, inflammation, and epigenetics. Chem Res Toxicol 29:2071–2095CrossRefGoogle Scholar
  19. Lu MC, Ji JA, Jiang ZY, You QD (2016) The keap1-nrf2-ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev 36(5):924–963CrossRefGoogle Scholar
  20. Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, Kumagai T, Nakamura Y, Osawa T, Horio F, Itoh K, Iida K, Yamamoto M, Uchida K (2002) A sulforaphane analogue that potently activates the Nrf2- dependent detoxification pathway. J Biol Chem 277:3456–3463CrossRefGoogle Scholar
  21. Nakamura Y, Yoshida C, Murakami A, Ohigashi H, Osawa T, Uchida K (2004) Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. FEBS Lett 572:245–250CrossRefGoogle Scholar
  22. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295CrossRefGoogle Scholar
  23. Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, Miura T, Terada T, Yabe-Nishimura C (2007) Curcumin activates human glutathione S-transferase P1 expression through antioxidant response. Toxicol Lett 170:238–247CrossRefGoogle Scholar
  24. Qin S, Hou DX (2016) Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 60:1731–1755CrossRefGoogle Scholar
  25. Saw CL, Kong TA (2011) Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in Colorectal cancer. Expert Opin Ther Targets 15(3):281–295CrossRefGoogle Scholar
  26. Schadich E, Hlavac J, Volna T, Varanasi L, Hajduch M, Dzubak P (2016) Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. Biomed Res Int 2016:2173275CrossRefGoogle Scholar
  27. Shih PH, Yeh CT, Yen GC (2007) Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55:9427–9435CrossRefGoogle Scholar
  28. Smith RE (2019) The effects of dietary supplements that overactivate the Nrf2/ARE system. Curr Med ChemGoogle Scholar
  29. Smith RE, Tran K Smith CC, McDonald M, Shejwalkar P, Hara K (2016) The role of the Nrf2/ARE antioxidant system in preventing cardiovascular diseases. Diseases 4(4):34CrossRefGoogle Scholar
  30. Stefanson AL, Bakovic M (2014) Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 6:3777–3801CrossRefGoogle Scholar
  31. Sun Y, Yang T, Leak RK, Chen JH, Zhang F (2017) Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targets 16(3):326–338CrossRefGoogle Scholar
  32. Tan XL, Spivack SD (2009) Dietary chemoprevention strategies for induction of phase II xenobiotic- metabolizing enzymes in lung carcinogenesis: a review. Lung Cancer 65:129–137CrossRefGoogle Scholar
  33. Thimmulappa RK, Rangasamy T, Alam J, Biswal S (2008) Dibenzoylmethane activates Nrf2-dependent detoxification pathway and inhibits benzo(a)pyrene induced DNA adducts in lungs. Med Chem 4(473):81Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chang-Hwei Chen
    • 1
  1. 1.Institute for Health and the Environment and Department of Biomedical SciencesUniversity at Albany, State University of New York, 5 University PlaceRensselaerUSA

Personalised recommendations