Advertisement

An Overview of Paleo-Climate Evidence in Egypt

  • Hassan KhozyemEmail author
Chapter
  • 374 Downloads
Part of the Springer Water book series (SPWA)

Abstract

In this chapter, we discuss the global paleoclimatic and paleoenvironmental changes focusing on their causes and consequences. Two main processes can yield the climatic changes; the earth’s internal processes and the extraterrestrial impacts. Both of them have a strong effect on the earth’s system. The paleoclimatic change is well preserved in the earth’s sedimentary record and can be reviled by using multidisciplinary studies including mineralogy, geochemistry, and the fossil contents. Egypt is a key area of one of the most pronounced climatic changes that occurred in the earth’s geologic history; the Paleocene Eocene thermal maximum (PETM) that used recently as analog for the current warming.

Keywords

Paleoclimate Paleoenvironment Mass extinction events Hyperthermal events PETM Current warming 

References

  1. 1.
    Glikson AY (2014) Evolution of the atmosphere, fire and the anthropocene climate event horizon. Springer briefs in earth sciences. ISSN 2191-5369, https://doi.org/10.1007/978-94-007-7332-5Google Scholar
  2. 2.
    Solanki SK (2002) Solar variability and climate change: is there a link? Sol Phys 43:59–513Google Scholar
  3. 3.
    Pfeilsticker, K. (2006). Paleo-climate. Institut für Umweltphysik, Universität Heidelberg, INF 229, 69120 HeidelbergGoogle Scholar
  4. 4.
    Gradstein F, Ogg J, Smith A (2004) A geologic time scale. Cambridge University Press, Cambridge, p 598Google Scholar
  5. 5.
    Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    MacLeod N (2003) The causes of Phanerozoic extinctions. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth, the impact of the physical environment. Elsevier Books, Oxford, pp 253–278Google Scholar
  7. 7.
    Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 35–52CrossRefGoogle Scholar
  8. 8.
    Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937CrossRefGoogle Scholar
  9. 9.
    Courtillot VE, Rennes PR (2003) On the ages of flood basalt events. CR Geosci 335:113–140CrossRefGoogle Scholar
  10. 10.
    Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757CrossRefGoogle Scholar
  11. 11.
    Gradstein MF, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale 2012, vol 1. Elsevier, 1144 ppGoogle Scholar
  12. 12.
    Berner RA, Vanderbrook JM, Ward PD (2007) Oxygen and evolution. Science 316:557–558CrossRefGoogle Scholar
  13. 13.
    Beerling DJ, Royer D (2011) Convergent cenozoic CO2 history. Nat Geosci 4:418–420CrossRefGoogle Scholar
  14. 14.
    Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354CrossRefGoogle Scholar
  15. 15.
    French BM (1998) Traces of catastrophe. Lunar Planet Inst 954:120Google Scholar
  16. 16.
    Glikson AY, Uysal IT (2013) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia. Earth Sci Rev 125:114–122CrossRefGoogle Scholar
  17. 17.
    Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76CrossRefGoogle Scholar
  18. 18.
    Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/tertiary impact. J Geophys Res 102:21645–21664CrossRefGoogle Scholar
  19. 19.
    Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, p 242Google Scholar
  20. 20.
    Ernst RE, Youbi N (2017) How large igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, palaeoclimatology, palaeoecologyGoogle Scholar
  21. 21.
    Bond DP, Wignall PB, Joachimski MM, Sun Y, Savov I, Grasby SE,… Blomeier DP (2015) An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. Geol Soc Am Bull 127(9–10):1411–1421‏Google Scholar
  22. 22.
    Bond DPG, Grasby SE (2016) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol.  https://doi.org/10.1016/j.palaeo.2016.11.005CrossRefGoogle Scholar
  23. 23.
    Courtillot V, Fluteau F (2014) A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses. In: Keller G, Kerr A (eds) Volcanism, impacts, and mass extinctions: causes and effects. Geological Society of America Special Paper 505, pp 301–317Google Scholar
  24. 24.
    Courtillot V, Fluteau F, Besse J (2015) Evidence for volcanism triggering extinctions: a short history of IPGP contributions with emphasis on paleomagnetism. In: Schmidt A, Fristad KE, Elkins Tanton LT (eds) Volcanism and global environmental change. Cambridge University Press, Cambridge. ©Google Scholar
  25. 25.
    Ernst RE (2014) Large igneous Provinces. Cambridge University Press, Cambridge, 653pGoogle Scholar
  26. 26.
    Wignall PB (2005) The link between large igneous province eruptions and mass extinctions. Elements 1:293–297CrossRefGoogle Scholar
  27. 27.
    Jones DS, Martini AM, Fike DA, Kaiho K (2017) A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia: Geology 45(7):631–634‏Google Scholar
  28. 28.
    Grasby SE, Beauchamp B, Knies J (2016) Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44(9):779–782.  https://doi.org/10.1130/g38141.1CrossRefGoogle Scholar
  29. 29.
    Grasby SE, Sanei H, Beauchamp B, Chen ZH (2013) Mercury deposition through the Permo-Triassic biotic crisis. Chem Geol 351:209–216CrossRefGoogle Scholar
  30. 30.
    Sanei H, Grasby SE, Beauchamp B (2012) Latest Permian mercury anomalies. Geology 40:63–66CrossRefGoogle Scholar
  31. 31.
    Percival LME, Witt MLI, Mather TA, Hermoso M, Jenkyns HC, Hesselbo SP, Al-Suwaidi AH, Storm MS, Xu W, Ruhl M (2015) Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo Ferrar large igneous Province. Earth Planet Sci Lett 428:267–280Google Scholar
  32. 32.
    Thibodeau AM, Bergquist BA (2017) Do mercury isotopes record the signature of massive volcanism in marine sedimentary records? Geology 45:95–96Google Scholar
  33. 33.
    Thibodeau AM, Ritterbush K, Yager JA, West J, Ibarra Y, Bottjer DJ, Berelson WM, Bergquist BA, Corsetti FA (2016) Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat Commun 7(11147).  https://doi.org/10.1038/ncomms11147
  34. 34.
    Charbonnier G, Morales C, Duchamp-Alphonse S, Westermann S, Adatte T, Föllmi KB (2017) Mercury enrichment indicates volcanic triggering of Valanginian environmental change. Sci Rep 7:40808.  https://doi.org/10.1038/srep40808
  35. 35.
    Bond DP, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29CrossRefGoogle Scholar
  36. 36.
    Courtillot V (2002) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press, CambridgeGoogle Scholar
  37. 37.
    Font E, Adatte T, Sial AN, Lacerda LD, Keller G, Punekar J (2016) Mercury anomaly, Deccan volcanism and the end-cretaceous mass extinction. Geology 44:171–174CrossRefGoogle Scholar
  38. 38.
    Punekar J, Keller G, Khozyem H, Hamming C, Adatte T, Tantawy AA, Spangenberg JE (2014) Late Maastrichtian-early Danian high-stress environments and delayed recovery linked to Deccan volcanism. Cretac Res 49:63–82CrossRefGoogle Scholar
  39. 39.
    Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33CrossRefGoogle Scholar
  40. 40.
    Khozyem H, Adatte T, Mbabi Bitchong A, Mahmoud A, Keller G (2017) The role of volcanism (North Atlantic Igneous province) In: The PETM events revealed by mercury anomalies. GSA Geological Society of America Abstracts with Programs, vol 49(6)Google Scholar
  41. 41.
    Khozyem H, Adatte T, Mbabi BA, Chevalier Y, Keller G (2016) Paleocene-Eocene thermal maximum triggered by volcanism? Evidence from mercury anomalies. GSA Annual Meeting in Denver, Colorado, USA—2016 Paper No. 106-2Google Scholar
  42. 42.
    Kurtz AC, KumP LR, Arthur MA, ZachoS JC, Paytan A (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles: Paleoceanography 18:1090.  https://doi.org/10.1029/2003pa000908
  43. 43.
    Svensen H, Planke S, Corfu F (2010) Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. J Geol Soc Lond 167:433–436CrossRefGoogle Scholar
  44. 44.
    Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R et al (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545Google Scholar
  45. 45.
    Westerhold T, Röhl U, McCarren H, Zachos J (2009) Latest on the absolute age of the Paleocene-Eocene thermal maximum (PETM): new insights from exact stratigraphic position of key ash layers + 19 and—17. Earth Planet Sci Lett 287(3–4):412–419CrossRefGoogle Scholar
  46. 46.
    Higgins JA, Schrag DP (2006) Beyond methane: towards a theory for the Paleocene-Eocene thermal maximum. Earth Planet Sci Lett 245:523–537CrossRefGoogle Scholar
  47. 47.
    DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D, Beerling DJ (2010) Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:87–91Google Scholar
  48. 48.
    Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971CrossRefGoogle Scholar
  49. 49.
    Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2002) Methane Hydrates in quaternary climate change: the clathrate gun hypothesis: special publication, vol 54. AGU, Washington, D. C, p 224Google Scholar
  50. 50.
    Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the phanerozoic. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. 51.
    Elewa A (2008) Late Ordovician mass extinction, p 252. ISBN 978-3-540-75915-7Google Scholar
  52. 52.
    Holland SM, Patzkowsky ME (2007) Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. PALAIOS. SEPM Soc Sediment Geol 22(4):392–407.  https://doi.org/10.2110/palo.2006.p 06-066
  53. 53.
    Holland SM, Patzkowsky ME (2015) The stratigraphy of mass extinction. Palaeontol Palaeontol Assoc 58(5):903–924.  https://doi.org/10.1111/pala.12188
  54. 54.
    Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187CrossRefGoogle Scholar
  55. 55.
    Briggs D, Crowther PR (2008) Palaeobiology II. Wiley, New York, p 223. ISBN 978-0-470-99928-8Google Scholar
  56. 56.
    Wang K, Attrep M, Orth CJ (2017) Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary. Geology 21(12):1071–1074CrossRefGoogle Scholar
  57. 57.
    Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107CrossRefGoogle Scholar
  58. 58.
    Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen nov a Late Devonian gymnosperm with cupulate ovules. Bot Gaz 150:170–189CrossRefGoogle Scholar
  59. 59.
    Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc B: Biol Sci 353(1365):113–130.  https://doi.org/10.1098/rstb.1998.0195
  60. 60.
    Bond DPG, Wignall PB (2008) The role of sea-level change and marine anoxia in the Frasnian-Famennian (Late Devonian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 263(3–4):107–118.  https://doi.org/10.1016/j.palaeo.2008.02.015
  61. 61.
    Burgess SD (2014) High-precision timeline for Earth’s most severe extinction. PNAS 111(9):3316–3321. Bibcode:2014PNAS..111.3316B.  https://doi.org/10.1073/pnas.1317692111
  62. 62.
    Bergstrom Cl, Dugatkin TL (2012) Evolution. Norton, p 515. ISBN 978-0-393-92592-0Google Scholar
  63. 63.
    Brayard A, Krumenacker LJ, Botting JP, Jenks JF, Bylund KG, Vennin E, Olivier N, Goudemand N, Saucède T, Charbonnier S, Romano C, Doguzhaeva L, Thuy B, Hautmann M, Stephen DA, Thomazo C, Escarguel G (2017) Unexpected early triassic marine ecosystem and the rise of the Modern evolutionary fauna. Sci Adv 13(2):e1602159Google Scholar
  64. 64.
    Renne PR, Zhang Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian: triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416CrossRefGoogle Scholar
  65. 65.
    Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158CrossRefGoogle Scholar
  66. 66.
    McGhee GR (1996) The late Devonian mass extinction. Columbia University Press, New YorkGoogle Scholar
  67. 67.
    Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675CrossRefGoogle Scholar
  68. 68.
    Berner RA (2005) The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217CrossRefGoogle Scholar
  69. 69.
    Ryder G, Fastovsky DE, Gartner S (1996) The cretaceous-tertiary event and other catastrophes in earth history. Geological Society of America, p 19. ISBN 9780813723075Google Scholar
  70. 70.
    Hames W, McHone JG, Renne P, Ruppel C (2003) The Central Atlantic Magmatic Province: insights from fragments of Pangea. Geophys Monog Ser 136:267Google Scholar
  71. 71.
    Jourdan F, Marzoli A, Bertrand HS, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias. Lithos 110:167–180CrossRefGoogle Scholar
  72. 72.
    Raup D, Sepkoski J Jr (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503CrossRefGoogle Scholar
  73. 73.
    Cowie JW, Ziegler W, Remane J (1989) Stratigraphic commission accelerates progress, 1984 to 1989. Episodes 12:79–83Google Scholar
  74. 74.
    Keller G (2001) The end-Cretaceous mass extinction in the marine realm: year 2000 assessment. Planet Space Sci 49(8):817–830CrossRefGoogle Scholar
  75. 75.
    Keller G, Li L, Macleod N (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeogr Palaeoclimatol Palaeoecol 119:221–254CrossRefGoogle Scholar
  76. 76.
    Remane J, Keller G, Adatte T, Pardo A (1999) Report on the international workshop on Cretaceous-Paleogene transitions. EpisodesGoogle Scholar
  77. 77.
    Adatte T, Keller G, Burns S, Stoykova KH, Ivanov MI, Vangelov D, Kramar U, Stüben D (2002) Paleoenvironment across the Cretaceous-Tertiary transition in eastern Bulgaria. Geol Soc Am Spec Pap 356:231–251Google Scholar
  78. 78.
    Adatte T, Stinnesbeck W, Keller G (1996) Lithostratigraphic and mineralogic correlations of near K/T boundary clastic sediments in northeastern Mexico: implications for origin and nature of deposition. Geol Soc Am Spec Pap 307:211–226Google Scholar
  79. 79.
    Keller G (2011) Defining the Cretaceous-Tertiary boundary: a practical guide and return to first principles. In: Keller G, Adatte T (eds) The end-cretaceous mass extinction and the Chicxulub Impact in Texas. Society for sedimentary geology special publication 100, pp 23–42. ISBN: 978-1-56576-308-1Google Scholar
  80. 80.
    Keller G, Adatte T, Berner Z, Pardo A, Lopez-Oliva L (2009) New evidence concerning the age and biotic effects of the Chicxulub impact in Mexico. J Geol Soc Lond 166:393–411CrossRefGoogle Scholar
  81. 81.
    Keller G, Adatte T (eds) (2011) The end-cretaceous mass extinction and the Chicxulub impact in Texas, pp 81–122. SEPM (Society for Sedimentary Geology)Google Scholar
  82. 82.
    Keller G, Khozyem HM, Adatte T, Malarkodi N, Spangenberg JE, Stinnesbeck W (2013) Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus. Geol Mag 150:885–907CrossRefGoogle Scholar
  83. 83.
    Keller G, Lopez-Oliva JG, Stinnesbeck W, Adatte T (1997) Age stratigraphy and deposition of near K/T siliciclastic deposits in Mexico: relation to bolide impact? Geol Soc Am Bull 109:410–428CrossRefGoogle Scholar
  84. 84.
    Mateo P, Keller G, Adatte T, Spangenberg JE (2015) Mass wasting and hiatuses during the Cretaceous-Tertiary transition in the North Atlantic: relationship to the Chicxulub impact? Palaeogeogr Palaeoclimatol Palaeoecol 441:96–115CrossRefGoogle Scholar
  85. 85.
    Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Collins GS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218CrossRefGoogle Scholar
  86. 86.
    Sohl NF, Martinez RE, Salmeron-Urena P, Soto-Jaramillo F (1991) Upper cretaceous. The Gulf of Mexico basin: Boulder, Colorado, Geological Society of America, Geology of North America, v. J, pp 205–244Google Scholar
  87. 87.
    Caldeira K, Rampino MR (1990) Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect. Geophys Res Lett 17(9):1299–1302CrossRefGoogle Scholar
  88. 88.
    Courtillot V (1990) Deccan volcanism at the Cretaceous-Tertiary boundary: past climatic crises as a key to the future? Global Planet Change 3(3):291–299CrossRefGoogle Scholar
  89. 89.
    Font E, Carlut J, Rémazeilles C, Mather TA, Nédélec A, Mirão J, Casale S (2017) End-cretaceous akaganéite as a mineral marker of Deccan volcanism in the sedimentary record. Sci Rep 7Google Scholar
  90. 90.
    Keller G, Adatte T, Bhowmick PK, Upadhyay H, Dave A, Reddy AN, Jaiprakash BC (2012) Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth Planet Sci Lett 341:211–221CrossRefGoogle Scholar
  91. 91.
    Petersen SV, Dutton A, Lohmann KC (2016) End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7Google Scholar
  92. 92.
    Ponte JMN (2013) Magnetic mineralogy of Cretaceous-Tertiary sections (Tethys, Iran and India): links with the Deccan Phase-2 (Doctoral dissertation)Google Scholar
  93. 93.
    Renne P, Sprain C, Pande K, Richards M, Vanderkluysen L, Self S (2016) Tempo of the Deccan Traps eruptions in relation to events at the Cretaceous-Paleogene boundary. In EGU general assembly conference abstracts (18, 9496)Google Scholar
  94. 94.
    Renne P, Sprain CJ, Richards MA, Self S, Vanderkluysen L, Pande K (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350(6256):76–78CrossRefGoogle Scholar
  95. 95.
    Robinson N, Ravizza G, Coccioni R, Peucker-Ehrenbrink B, Norris R (2009) A high-resolution marine 187 Os/188 Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet Sci Lett 281(3):159–168CrossRefGoogle Scholar
  96. 96.
    Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefGoogle Scholar
  97. 97.
    Katz ME, Pak DK, Dickens GR, Miller KG (1999) The source and fate of massive carbon input during the Latest Paleocene thermal maximum. Science 286:1531–1533CrossRefGoogle Scholar
  98. 98.
    Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon cycle dynamics. Nature 451:279–283CrossRefGoogle Scholar
  99. 99.
    Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225–229CrossRefGoogle Scholar
  100. 100.
    Alegret L, Ortiz S, Molina E (2009) Extinction and recovery of benthic foraminifera across the Paleocene-Eocene thermal maximum at the Alamedilla section (Southern Spain). Palaeogeogr Palaeoclimatol Palaeoecol 279:186–200CrossRefGoogle Scholar
  101. 101.
    Speijer R, Wagner T (2002) Sea-level changes and black shales associated with the late Paleocene thermal maximum: organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt-Israel). Geol Soc Am Spec Paper 356:533–549Google Scholar
  102. 102.
    Thomas E (1989) Development of Cenozoic deep-sea benthic foraminiferal faunas in Antarctic waters. J Geol Soc Lond Spec Publ 47:283–296CrossRefGoogle Scholar
  103. 103.
    Kelly DC, Bralower TJ, Zachos JC, Premoli-Silva I, Thomas E (1996) Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:423–426CrossRefGoogle Scholar
  104. 104.
    Lu G, Adatte T, Keller G, Ortiz N (1998) Abrupt climatic, oceanographic and ecologic changes near the Paleocene-Eocene transition in the deep Tethys basin: the Alamedilla section, southern Spain. Ecol Geol Helvatica 91:293–306Google Scholar
  105. 105.
    Luciani V, Giusberti L, Agnini C, Backman J, Fornaciari E, Rio D (2007) Paleocene-Eocene thermal maximum as recorded by Tethyan planktonic foraminifera in the Forada section (northern Italy). Mar Micropaleontol 64:189–214CrossRefGoogle Scholar
  106. 106.
    Bolle MP, Adatte T (2001) Paleocene-early eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Mineral 36:249–261CrossRefGoogle Scholar
  107. 107.
    Bolle M-P, Tantawy AA, Pardo A, Adatte T, Burns SJ, Kassab A (2000) Climatic and environmental changes documented in the upper Paleocene to lower Eocene of Egypt. Eclogae Geol Helv 93:33–51Google Scholar
  108. 108.
    Bowen GJ, Beerling DJ, Koch PL, Zachos JC, Quattlebaum T (2004) A humid climate state during the Paleocene-Eocene thermal maximum. Nature 432:495–499CrossRefGoogle Scholar
  109. 109.
    Bowen GJ, Clyde WC, Koch PL, Ting S, Alroy J, Tsubamoto T, Wang Y, Wang Y (2002) Mammalian dispersal at the Paleocene/Eocene boundary. Science 295:2062–2065CrossRefGoogle Scholar
  110. 110.
    Wing SL, Alroy J, Hickey LJ (1995) Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeogr Palaeoclimatol Palaeoecol 115:117–155CrossRefGoogle Scholar
  111. 111.
    Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) Highest diversity of earliest bats in the Early Eocene of India. Naturwissenscehaften 94:1003–1009CrossRefGoogle Scholar
  112. 112.
    Koch PL, Zachos JC, Dettman DL (1995) Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighom Basin (Wyoming, USA). Palaeogeogr Palaeoclimatol Palaeoecol 115:61–89CrossRefGoogle Scholar
  113. 113.
    Koch PL, Zachos JC, Gingerich PD (1992) Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene- Eocene boundary. Nature 358:319–322Google Scholar
  114. 114.
    McInerney FA, Wing SL (2011) The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann Rev Earth Planet Sci 39:489–516CrossRefGoogle Scholar
  115. 115.
    Moore EA, Kurtz AC (2008) Black carbon in Paleocene-Eocene boundary sediments: a test of biomass combustion as the PETM trigger. Palaeogeogr Palaeoclimatol Palaeoecol 267:147–152CrossRefGoogle Scholar
  116. 116.
    Westerhold T, Röhl U, Donner B, McCarren HK, Zachos JC (2011) A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography 26(2)‏Google Scholar
  117. 117.
    Gavrilov YO, Shcherbinina EA, Oberhänsli H (2003) Paleocene-Eocene boundary events in the northeastern Peri-Tethys. Geol Soc Am Spec Pap 369:147–168Google Scholar
  118. 118.
    Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:1161–1611CrossRefGoogle Scholar
  119. 119.
    Dickens G (2011) Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim Past 7:831–846CrossRefGoogle Scholar
  120. 120.
    Katz M, Cramer B, Mountain G, Katz S, Miller K (2001) Uncorking the bottle: what triggered the paleocene/Eocene thermal maximum methane release? Paleoceanography 16(6):549–562CrossRefGoogle Scholar
  121. 121.
    Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:259–262CrossRefGoogle Scholar
  122. 122.
    Bowen GJ, Zachos JC (2010) Rapid carbon sequestration at the termination of the Palaeocene-Eocene thermal maximum. Nat Geosci 3:866–869CrossRefGoogle Scholar
  123. 123.
    Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens GR, Huber M, Reichart GJ, Stein R (2006) Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–613CrossRefGoogle Scholar
  124. 124.
    Weijers JWH, Schouten S, Sluijs A, Brinkhuis H, Sinninghe Damsté JS (2007) Warm Arctic continents during the Palaeocene-Eocene thermal maximum. Earth Planet Sci Lett 261:230–238CrossRefGoogle Scholar
  125. 125.
    Zachos JC, Schouten S, Bohaty S, Quattlebaum T, Sluijs A, Brinkhuis H, Gibbs SJ, Bralower TJ (2006) Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene thermal maximum: inferences from TEX86 and isotope data. Geology 34:737–740CrossRefGoogle Scholar
  126. 126.
    Bains S, Norris RD, Corfield RM, Faul KL (2000) Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback. Nature 407:171–174CrossRefGoogle Scholar
  127. 127.
    Torfstein A, Winckler G, Tripati A (2010) Productivity feedback did not terminate the Paleocene Eocene thermal maximum (PETM). Clim Past 5:2391–2410CrossRefGoogle Scholar
  128. 128.
    Kelly DC, Nielsen T, McCarren H, Zachos JC, Rohl U (2010) Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: implications for carbon cycling during the Paleocene-Eocene thermal maximum. Palaeogeogr Palaeoclimatol Palaeoecol 293:30–40CrossRefGoogle Scholar
  129. 129.
    Kelly DC, Zachos JC, Bralower TJ, Schellenberg SA (2005) Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene Eocene thermal maximum. Paleoceanography 20:4023CrossRefGoogle Scholar
  130. 130.
    Aubry M-P, Ouda K, Dupuis C, Berggren WA, Van Couvering JA, Members of the Working Group on the Paleocene/Eocene Boundary (2007) The global standard stratotype-section and point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt). Episodes 30(4):271–286Google Scholar
  131. 131.
    Dupuis C, Aubry M-P, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-Clausen C (2003) The Dababiya Quarry section: lithostratigraphy, clay mineralogy, geochemistry and paleontology. In: Ouda K, Aubry M-P (eds) The upper Paleocene–Lower Eocene of the Upper Nile Valley: Part 1. Stratigraphy: micropaleontology, vol 49, pp 41–59Google Scholar
  132. 132.
    Jaramillo CA, Ochoa D, Contreras L, Pagani M, Carvajal-Ortiz H et al (2010) Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation. Science 330:957–961CrossRefGoogle Scholar
  133. 133.
    Aziz HA, Hilgen FJ, Luijk GM, Sluijs A, Kraus MJ (2008) Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology 36:531–534CrossRefGoogle Scholar
  134. 134.
    Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem Geophys Geosyst 8, Q12002 ppGoogle Scholar
  135. 135.
    Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim Cosmochim Acta 74:5098–5108CrossRefGoogle Scholar
  136. 136.
    Khozyem H, Adatte T, Keller G, Tantawy AA, Spangenberg JE (2014) The paleocene-eocene GSSP at Dababiya, Egypt-Revisited. Episodes 37(2):78–86CrossRefGoogle Scholar
  137. 137.
    Khozyem H, Adatte T, Spangenberg EJ, Tantawy A, Gerta Keller K (2013) Paleoenvironmental and climatic changes during the Paleocene-Eocene thermal maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt. J Geol Soc Lond 170:341–352CrossRefGoogle Scholar
  138. 138.
    Khozyem H, Adatte T, Spangenberg JE, Keller G, Tantawy AA, Ulianov A (2015) New geochemical constraints on the Paleocene-Eocene thermal maximum: Dababiya GSSP, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 429:117–135CrossRefGoogle Scholar
  139. 139.
    Castree N (2015) The Anthropocene: a primer for geographers. Geography 100 part 2: 66Google Scholar
  140. 140.
    Edwards LE (2015) What is the Anthropocene? Eos 96.  https://doi.org/10.1029/2015eo040297
  141. 141.
    Waters CN, Zalasiewicz J, Summerhayes C, Fairchild IJ, Rose NL, Loader NJ, Shotyk W, Cearreta A, Head MJ, James PM, Syvitski, Williams M, Wagreich M, Barnosky AD, Zhisheng A, Leinfelder R, Jeandel C, Gałuszka A, Ivar do Sul JA, Gradstein F, Steffen W, McNeill JR, Wing S, Poirier C, Edgeworth M (2017) Global boundary stratotype section and point (GSSP) for the Anthropocene Series: where and how to look for potential candidates.  https://doi.org/10.1016/j.earscirev.2017.12.016
  142. 142.
    Waters CN et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269).  https://doi.org/10.1126/science.aad2622
  143. 143.
    Mason B (2003) Man has been changing climate for 8,000 years. Nature.  https://doi.org/10.1038/news031208-7
  144. 144.
    Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293.  https://doi.org/10.1023/b:clim.0000004577.17928.fa
  145. 145.
    ESRL Web Tea (2015) ESRL global monitoring division–global greenhouse gas reference network. noaa.govGoogle Scholar
  146. 146.
    NASA (2016) Global climate change—vital signs of the planet—facts—Carbon DioxideGoogle Scholar
  147. 147.
    Lewis SL, Maslin MA (2015) Defining the Anthropocene (PDF). Nature 519(7542):171–180. https://doi.org/10.1038/nature14258Google Scholar
  148. 148.
    Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B, Spangenberg JE, Font E, Bitchong A, Adatte T (2018) Environmental changes across the Cretaceous-Paleogene mass extinction and paleocene-eocene thermal maximum: implications for the anthropocene. Gondwana Res 56:69–89.  https://doi.org/10.1016/j.gr.2017.12.002

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Geology Department, Faculty of SciencesAswan UniversityAswanEgypt

Personalised recommendations