Advertisement

Classification of Plant Species by Similarity Using Automatic Learning

  • Zacrada Françoise Odile TreyEmail author
  • Bi Tra Goore
  • Brou Marcellin Konan
Conference paper
  • 57 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 311)

Abstract

The classification methods are diverse and variety from one field of study to another. Among botanists, plants classification is done manually. This task is difficult, and results are not satisfactory. However, artificial intelligence, which is a new field of computer science, advocates automatic classification methods. It uses well-trained algorithms facilitating the classification activity for very efficient results. However, depending on the classification criterion, some algorithms are more efficient than others. Through our article, we classify plants according to their type: trees, shrubs and herbaceous plants by comparing two types of learning meaning the supervised and unsupervised learning. For each type of learning, we use these corresponding algorithms which are K-Means algorithms and decision trees. Thus we developed two classification models with each of these algorithms. The performance indicators of these models revealed different figures. We have concluded that one of these algorithms is more effective than the other in grouping our plants by similarity.

Keywords

Automatic learning Classification Algorithm 

References

  1. 1.
    Picouet, D., et al.: les règles de la taxonimie: nommer les espèces (2018)Google Scholar
  2. 2.
    Kaya, A., et al.: Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric. (2019)Google Scholar
  3. 3.
    Saleem, G., et al.: Automated analysis of visual leaf shape features for plant classification. Comput. Electron. Agric. (2019)Google Scholar
  4. 4.
    Coulon, A.: supplément à l’intelligence artificielle, la Lettre 111, Printemps (2018)Google Scholar
  5. 5.
    Paquette, D., et al.: Clés des 16 genres de Cypéraceaes, Flora Quebeca, 19 Septembre 2016Google Scholar
  6. 6.
    Paquette, D., et al.: Clés des verges d’or, Flora Québéca (2016)Google Scholar
  7. 7.
    Sabourin, A., et al.: clé des crucifères., flora Québéca, mars 2018Google Scholar
  8. 8.
    Guillaume, R., de La Clergerie, É.V.: Analyse automatique de documents botaniques: le projet Biotim. In: Proceedings of TIA 2005: Journées Terminologie; Intelligence Artificielle, Rouen, France, April 2005Google Scholar
  9. 9.
    Boyd, R., et al.: Une base de données informatisée transdisciplinaire de la flore chez les sémé du burkina faso: un outil pour l’étude du lien nature-société (2014)Google Scholar
  10. 10.
    Pegliasco, G.: Classer une fleur selon des critères observables: Initiation au Machine Learning avec Python - La pratiqueGoogle Scholar
  11. 11.
    Piernot, T., et al.: Flora Bellissima, un nouvel outil pour découvrir la flore, mars 2014Google Scholar
  12. 12.
    Dyrmann, M., et al.: Plants species classification using deep convolutional neural network (2016).  https://doi.org/10.1016/j.biosystemseng.2016.08.024
  13. 13.
    Zhao, Z.-Q., et al.: ApLeaf: an efficient android-based plant leaf identification system. Neurocomputing (2014)Google Scholar
  14. 14.
    Tippannavar, S., et al.: A machine learning system for recognition of vegetable plant and classification of abnormality using leaf texture analysis. Int. J. Sci. Eng. Res. 8(6), 1558–1563 (2017)Google Scholar
  15. 15.
    Hutchinson, J., Dalziel, J.M., Keay, R.W.J., Hepper, N.: Flora of West Tropical Africa (2014)Google Scholar
  16. 16.
    Forum des Marais Atlantiques 2017, Herbier Numérique, Flore en zonz humide, Région nouvelles d’Aquitaine, 93 p. http://www.forum-zones-humides.org
  17. 17.
    Schoonderwoerd, K.M., et al.: Zygotic dormancy underlies prolonged seed development in Franklinia alatamaha (Theaceae): a most unusual case of reproductive phenology in angiosperms. Bot. J. Linn. Soc. 181(1), 70–83 (2016)CrossRefGoogle Scholar
  18. 18.
    Dundar, M., Kou, Q., Zhang, B., He, Y., Rajwa, B.: Simplicity of Kmeans versus deepness of deep learning: a case of unsupervised feature learning with limited data. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 883–888 (2015)Google Scholar
  19. 19.
    Bholowalia, P., Kumar, A.: EBK-means: a clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl. 105 (2014)Google Scholar
  20. 20.
    Beraud, P.: MSFT, 5 August 2014Google Scholar
  21. 21.
    Biernat, E., et al.: Data science: fondamentaux et études de cas, EYROLLES (2015)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Zacrada Françoise Odile Trey
    • 1
    Email author
  • Bi Tra Goore
    • 1
  • Brou Marcellin Konan
    • 1
  1. 1.Institut National Polytechnique Houphouët-BoignyYamoussoukroCôte d’Ivoire

Personalised recommendations