Advertisement

A Hybrid Network Model Embracing NB-IoT and D2D Communications: Stochastic Geometry Analysis

  • Athanase M. AtchomeEmail author
  • Hafiz Husnain Raza Sherazi
  • Rodrigue Alahassa
  • Frantz Tossa
  • Thierry O. Edoh
  • Luigi Alfredo Grieco
  • Antoine C. Vianou
Conference paper
  • 59 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 311)

Abstract

A narrow-band system introduced in Release 13 of 3GPP has recently gain momentum to support a range of IoT use-cases. Narrowband-Internet of Things (NB-IoT) comes with low-cost devices characterized by extremely low power consumption, offering a battery life of more than 10 years, and broad radio coverage to target tens of kilometers, but on the cost of low data rate and higher end-to-end latency. NB-IoT can be deployed in three different modes of operation; stand-alone, in-band, and within the guard-band of existing LTE carrier. In this paper, a hybrid network model embracing both NB-IoT and D2D technologies has been introduced. we first present an analytical framework to derive analytical rate expressions for D2D in NB-IoT networks. Then, the performance gains of network model are investigated through numerical evaluations that demonstrate the superiority of proposed model over the traditional NB-IoT network.

Keywords

NB-IoT networks Cellular networks Spectrum sharing Stochastic geometry 

References

  1. 1.
    Holma, H., Toskala, A., Reunanen, J.: LTE Small Cell Optimization: 3GPP Evolution to Release 13. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  2. 2.
    Dahlman, E., Parkvall, S., Sköld, J.: 4G: LTE/LTE-Advanced for Mobile Broadband. Academic Press, Oxford (2011)Google Scholar
  3. 3.
    Stuckmann, P.: The GSM Evolution: Mobile Packet Data Services. John Wiley and Sons, West Sussex (2003)Google Scholar
  4. 4.
    Qualcomm, Incorporated, “Narrowband IoT (NB-IoT),” RP-151621, 3GPP TSG RAN Meeting 69, September 2015. http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_69/Docs/RP-151621.zip
  5. 5.
    Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A.: NB-IoT system for M2M communication. In: IEEE WCNC, Doha, April 2016Google Scholar
  6. 6.
    Nair, K.K., Abu-Mahfouz, A.M., Lefophane, S.: Analysis of the narrow band internet of things (NB-IoT) technology. In: 2019 Conference on Information Communications Technology and Society (ICTAS), 02 May 2019 (2019).  https://doi.org/10.1109/ICTAS.2019.8703630
  7. 7.
    Vejlgaard, B., Lauridsen, M., Nguyen, H., Kovacs, I.Z., Mogensen, P., Sorensen, M.: Coverage and capacity analysis of Sigfox, LoRa, GPRS, and NB-IoT. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 4–7 June 2017 (2017).  https://doi.org/10.1109/VTCSpring.2017.8108666
  8. 8.
    Corson, M., Laroia, R., Li, J., Park, V., Richardson, T., Tsirtsis, G.: Toward proximity-aware internetworking. IEEE Wirel. Commun. 17(6), 26–33 (2010)CrossRefGoogle Scholar
  9. 9.
    3GPP TR 22.803 V1.0.0, 3rd generation partnership project; technical specification group SA; feasibility study for proximity services (ProSe)(release 12), Technical Report, August 2012Google Scholar
  10. 10.
    Fodor, G., et al.: Design aspects of network assisted device-to-devicecommunications. IEEE Commun. Mag. 50(3), 170–177 (2012)CrossRefGoogle Scholar
  11. 11.
    Lin, X., Andrews, J.G., Ghosh, A., Ratasuk, R.: An overview of 3GPP device-to-device proximity services. IEEE Commun. Mag. 52(4), 40–48 (2014)CrossRefGoogle Scholar
  12. 12.
    TR 45.820 v13.1.0, Cellular system support for Ultra low complexity and low throughput internet of things, November 2015. http://www.3gpp.org/ftp/Specs/archive/45_series/45.820/45820-d10.zip
  13. 13.
    Andrews, J.G., BAccelli, F., Ganti, R.: A tractable approach to coverage and rate in cellular networks. IEEE Trans. Wirel. Commun. 12(11), 3122–3134 (2011)CrossRefGoogle Scholar
  14. 14.
    Lin, X., Ganti, R.K., Fleming, P.J., Andrews, J.G.: Towards understanding the fundamentals of mobility in cellular networks. IEEE Trans. Wirel. Commun. 12(4), 1686–1698 (2013)CrossRefGoogle Scholar
  15. 15.
    Doppler, K., Rime, M., Wijting, C., Ribeiro, C.B., Hugl, K.: Device-to-Device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)CrossRefGoogle Scholar
  16. 16.
    Doppler, K., Rinne, M., et al.: Device-to-Device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)CrossRefGoogle Scholar
  17. 17.
    Corson, M.S., Li, J., Park, V., et al.: Toward proximity aware internetworking. IEEE Wirel. Commun. 17(6), 26–33 (2010)CrossRefGoogle Scholar
  18. 18.
    Wei, L., Hu, R.Q., Qian, Y., Wu, G.: Enable device-to-device communications underlaying cellular networks: challenges and research aspects. IEEE Commun. Mag. 52(6), 90–96 (2014)CrossRefGoogle Scholar
  19. 19.
    Xin, J., Zhu, Q., Liang, G., Zhang, T.: Performance analysis of D2D underlying cellular networks based on dynamic priority queuing model. J. Mag. 7, 27479–27489 (2019).  https://doi.org/10.1109/ACCESS.2019.2894678CrossRefGoogle Scholar
  20. 20.
    Qamar, F., Dimyati, K., Hindia, M.N., Noordin, K.A., Amiri, I.S.: A stochastically geometrical poisson point process approach for the future 5G D2D enabled cooperative cellular network. J. Mag. 7, 60465–60485 (2019)Google Scholar
  21. 21.
    Chakrabarti, S., Das, S.: Poisson point process-based network modelling and performance analysis of multi-hop D2D chain relay formation in heterogeneous wireless network. Int. J. Commun. Netw. Distrib. Syst. 22(1), 98–122 (2018).  https://doi.org/10.1504/IJCNDS.2019.096522CrossRefGoogle Scholar
  22. 22.
    ElHalawany, B.M., Ruby, R., Wu, K.: D2D communication for enabling internet-of-things: outage probability analysis. IEEE Trans. Veh. Technol. 68(3), 2332–2345 (2019).  https://doi.org/10.1109/TVT.2019.2891648CrossRefGoogle Scholar
  23. 23.
    Wang, Y.P.E., Lin, X., et al.: A primary on 3GPP narrowband internet of things (NB-IoT). arXiv:1606.04171 (2016)
  24. 24.
    Ratasuk, R., Mangalvedhe, N., Ghosh, A.: Overview of LTE enhancements for cellular IoT. In: IEEE PIMRC, Hong Kong, September 2015Google Scholar
  25. 25.
    Wang, Y.P.E., et al.: A Primer on 3GPP narrowband internet of things (NB-IoT) networking and internet architecture (cs.NI); Information Theory (cs.IT). arXiv:1606.04171 [cs.NI]. Accessed 13 June 2016
  26. 26.
    Mangalvedhe, N., Ratasuk, R., Ghosh, A.: NB-IoT deployment study for low power wide area cellular IoT. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 4–8 September 2016 (2016).  https://doi.org/10.1109/PIMRC.2016.7794567
  27. 27.
    Zhang, H., Li, J., Wen, B., Xun, Y., Liu, J.: Connecting intelligent things in smart hospitals using NB-IoT. IEEE Internet Things J. 5(3), 1550–1560 (2018).  https://doi.org/10.1109/JIOT.2018.2792423CrossRefGoogle Scholar
  28. 28.
    Lin, X., Andrews, J.G., Ghosh, A.: Spectrum sharing for device-to-device communication in cellular networks. IEEE Trans. Wirel. Commun. 13(12), 6727–6740 (2014)CrossRefGoogle Scholar
  29. 29.
    Baccelli, F., Blaszczyszyn, B.: Stochastic geometry and wireless networks - Part I: Theory. Found. Trends Netw. 3(3–4), 249–449 (2009)CrossRefGoogle Scholar
  30. 30.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and its Applications. Wiley, New York (1995)zbMATHGoogle Scholar
  31. 31.
    Lin, X., Andrews, J.G.: A general approach to SINR-based performance metrics with application to D2D and carrier aggregation. In: Proceedings of Asilomar Conference on Signals, Systems, and Computers, pp. 1–5, November 2013Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Athanase M. Atchome
    • 1
    Email author
  • Hafiz Husnain Raza Sherazi
    • 2
  • Rodrigue Alahassa
    • 3
  • Frantz Tossa
    • 1
  • Thierry O. Edoh
    • 4
  • Luigi Alfredo Grieco
    • 2
  • Antoine C. Vianou
    • 1
  1. 1.Ecole Doctorale Des Sciences de l’Ingénieur (ED-SDI)/UACCotonouBenin
  2. 2.Department of Electrical and Information EngineeringPolitecnico di BariBariItaly
  3. 3.Institut de Mathématiques et de Sciences Physiques(IMSP)/UACPorto-NovoBenin
  4. 4.RFW-Universität of BonnTechnische Universität MünchenMunichGermany

Personalised recommendations