Practical Use of Noise Mapping to Reduce Noise Exposure in the Construction Industry

  • M. L. De la Hoz-TorresEmail author
  • Antonio J. Aguilar-Aguilera
  • M. D. Martínez-Aires
  • Diego P. Ruiz
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 277)


Noise exposure is prevalent in many workplaces; however, not all economic sectors are equally affected. Some construction activities are among the productive processes that cause the most noise pollution. This study aims to provide construction industry practitioners with a better understanding of the impacts of occupational noise to improve the management of construction activities. This research starts from the premise that noise maps can be used for acoustic management in construction workplaces. The noise map is presented as a quantitative tool that supports management by providing information to evaluate the noise safety-related performance of construction activities using a risk-analysis-based approach. For this purpose, the possible use of sound maps as a tool in plans for noise protection where construction activities are taking place is discussed. Noise measurements were collected in a concrete production facility. A noise map has been drawn up and the possibility of using it as part of a strategic plan to protect workers’ health has been analysed.


Construction Noise Noise map Decision support Noise management 


  1. 1.
    World Health Organization: Addressing the rising prevalence of hearing loss (2018)Google Scholar
  2. 2.
    World Health Organization: Europe gbd data and statistics—occupational health (2017). Available at: Accessed 18 Sept 2019
  3. 3.
    Seidman, M.D., Standring, R.T.: Noise and quality of life. Int. J. Environ. Res. Public Health 7(10), 3730–3738 (2010)CrossRefGoogle Scholar
  4. 4.
    Kwon, N., Park, M., Lee, H.-S., Ahn, J., Shin, M.: Construction noise management using active noise control techniques. J. Constr. Eng. Manag. 142(7), 04016014 (2016)CrossRefGoogle Scholar
  5. 5.
    Kujawa, S.G., Liberman, M.C.: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29(45), 14077–14085 (2009)CrossRefGoogle Scholar
  6. 6.
    Eggermont, J.J.: Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hear. Res. 35, 212–222 (2017)Google Scholar
  7. 7.
    Jafari, Z., Kolb, B.E., Mohajerani, M.H.: Noise exposure accelerates the risk of cognitive impairment and alzheimer’s disease: adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci. Biobehav. Rev. (2019)Google Scholar
  8. 8.
    Verbeek, J.H., Kateman, E., Morata, T.C., Dreschler, W.A., Mischke, C.: Interventions to prevent occupational noise-induced hearing loss: a cochrane systematic review. Int. J. Audiol. 53(sup2), S84–S96 (2014)CrossRefGoogle Scholar
  9. 9.
    De La Hoz-Torres, M., López-Alonso, M., Ruiz Padillo, D., Martínez-Aires, M.: Analysis of whole-body vibrations transmitted by earth moving machinery. In: Proceedings of International Symposium on Occupational Safety and Hygiene, SHO, pp. 453–456, (2017)Google Scholar
  10. 10.
    de la Hoz-Torres, M., Martínez-Aires, M., Martín-Morales, M., Padillo, D.R.: Whole body vibration and acoustic exposure in construction and demolition waste management. In: Occupational Safety and Hygiene VI: Book chapters from the 6th International Symposium on Occupation Safety and Hygiene (SHO 2018), 26–27 March 2018, Guimarães, Portugal, p. 273 (2018)Google Scholar
  11. 11.
    Fernández, M.D., Quintana, S., Chavarría, N., Ballesteros, J.A.: Noise exposure of workers of the construction sector. Appl. Acoust. 70(5), 753–760 (2009)CrossRefGoogle Scholar
  12. 12.
    Barrero, J.P., García-Herrero, S., Mariscal, M.A., Gutierrez, J.: How activity type, time on the job and noise level on the job affect the hearing of the working population. Using bayesian networks to predict the development of hypoacusia. Saf. Sci. 11, 1–12 (2018)Google Scholar
  13. 13.
    Kerns, E., Masterson, E.A., Themann, C.L., Calvert, G.M.: Cardiovascular conditions, hearing difficulty, and occupational noise exposure within us industries and occupations. Am. J. Ind. Med. 61(6), 477–491 (2018)CrossRefGoogle Scholar
  14. 14.
    Lie, A., Skogstad, M., Johannessen, H.A., Tynes, T., Mehlum, I.S., Nordby, K.-C., Engdahl, B., Tambs, K.: Occupational noise exposure and hearing: a systematic review. Int. Arch. Occup. Environ. Health 89(3), 351–372 (2016)CrossRefGoogle Scholar
  15. 15.
    Kephalopoulos, S., Paviotti, M., Anfosso-Lédée, F., Van Maercke, D., Shilton, S., Jones, N.: Advances in the development of common noise assessment methods in Europe: the cnossos-eu framework for strategic environmental noise mapping. Sci. Total Environ. 48, 2400–2410 (2014)Google Scholar
  16. 16.
    Gulliver, J., Morley, D., Vienneau, D., Fabbri, F., Bell, M., Goodman, P., Beevers, S., Dajnak, D., Kelly, F.J.; Fecht, D.: Development of an open-source road traffic noise model for exposure assessment. Environ. Model. Softw. 74, 183–193 (2015)Google Scholar
  17. 17.
    Ruotolo, F., Maffei, L., Di Gabriele, M., Iachini, T., Masullo, M., Ruggiero, G., Senese, V.P.: Immersive virtual reality and environmental noise assessment: an innovative audio–visual approach. Environ. Impact Assess. Rev. 41, 10–20 (2013)Google Scholar
  18. 18.
    Seixas, N.S., Sheppard, L., Neitzel, R.: Comparison of task-based estimates with full-shift measurements of noise exposure. AIHA J. 64(6), 823–829 (2003)CrossRefGoogle Scholar
  19. 19.
    Quintana, S., Fernandez, M.D., Chavarria, N., Ballesteros, J.A., Gonzalez, I.: Measurement method for noise exposure of jobs of the construction sector. J. Acoust. Soc. Am. 123(5), 3678 (2008)CrossRefGoogle Scholar
  20. 20.
    Arezes, P.M., Geraldes, J.: Assessing differences in methodologies for effective noise exposure calculation. Int. J. Occup. Saf. Ergon. 15(2), 183–191 (2009)CrossRefGoogle Scholar
  21. 21.
    Arezes, P.M., Bernardo, C., Mateus, O.A.: Measurement strategies for occupational noise exposure assessment: a comparison study in different industrial environments. Int. J. Ind. Ergon. 42(1), 172–177 (2012)CrossRefGoogle Scholar
  22. 22.
    Bullock, W.H., Ignacio, J.S: A Strategy for Assessing and Managing Occupational Exposures. AIHA (2006)Google Scholar
  23. 23.
    Golmohammadi, R., Eshaghi, M., Khoram, M.R.: Fuzzy logic method for assessment of noise exposure risk in an industrial workplace. Int. J. Occup. Hyg. 3(2), 49–55 (2011)Google Scholar
  24. 24.
    2002/49/E. Eu. Directive 2002/49/ec of the european parliament and of the council of 25 June 2002 relating to the assessment and management of environmental noise—declaration by the commission in the conciliation committee on the directive relating to the assessment and management of environmental noiseGoogle Scholar
  25. 25.
    Carreras, P.S.: NTP 94: Plantas de hormigonado: Tipo torre. Instituto Nacional de Seguridad e Higiene en el Trabajo (1984)Google Scholar
  26. 26.
    Harman, B.I., Koseoglu, H., Yigit, C.O.: Performance evaluation of idw, kriging and multiquadric interpolation methods in producing noise mapping: a case study at the city of Isparta, Turkey. Appl. Acoust. 112, 147–157 (2016)Google Scholar
  27. 27.
    Aumond, P., Can, A., Mallet, V., De Coensel, B., Ribeiro, C., Botteldooren, D., Lavandier, C.: Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. J. Acoust. Soc. Am. 143(5), 2847–2857 (2018)CrossRefGoogle Scholar
  28. 28.
    Aires, M.D.M., Gámez, M.C.R., Gibb, A.: Prevention through design: the effect of european directives on construction workplace accidents. Saf. Sci. 48(2), 248–258 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of GranadaGranadaSpain
  2. 2.Department of Building ConstructionUniversity of GranadaGranadaSpain

Personalised recommendations