Advertisement

DSEL: A Domain-Specific Entity Linking System

  • Xinru Zhang
  • Huifang Xu
  • Yixin Cao
  • Yuanpeng Tan
  • Lei HouEmail author
  • Juanzi Li
  • Jiaxin Shi
Conference paper
  • 28 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12032)

Abstract

Entity linking refers to the task of resolving multiple named entity mentions in a document to their correct references in a knowledge base (KB). It can bridge the gap between unstructured nature language documents that computers hardly understand and a structured semantic Knowledge Base which can be easily processed by computers. Existing studies and systems about entity linking mainly focus on the open domain, which may cause three problems: 1. linking to unconcerned entities; 2. time and space consuming; 3. less precision. In this paper, we address the problem by restricting entity linking into specific domains and leveraging domain information to enhance the linking performance. We propose an unsupervised method to generate domain data from Wikipedia and provide a domain-specific neural collective entity linking model for each domain. Based on domain data and domain models, we build a system that can provide domain entity linking for users. Our system, Domain-Specific neural collective Entity Linking system (DSEL), supporting entity linking in 12 domains, is published as an online website, https://dsel.xlore.org.

Keywords

Entity Linking Domain Generation Graph convolution network 

Notes

Acknowledgments

The work is supported by NSFC key projects (U1736204, 61533018, 61661146007), Key Technology Develop and Research Project of SGCC (5400-201953257A-0-0-00), Ministry of Education and China Mobile Joint Fund (MCM20170301), and THUNUS NExT Co-Lab.

References

  1. 1.
    Cao, Y., Hou, L., Li, J., Liu, Z.: Neural collective entity linking. arXiv preprint arXiv:1811.08603 (2018)
  2. 2.
    Chen, Z., Ji, H.: Collaborative ranking: a case study on entity linking. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 771–781. Association for Computational Linguistics (2011)Google Scholar
  3. 3.
    Chisholm, A., Hachey, B.: Entity disambiguation with web links. Trans. Assoc. Comput. Linguist. 3, 145–156 (2015)CrossRefGoogle Scholar
  4. 4.
    Durrett, G., Klein, D.: A joint model for entity analysis: coreference, typing, and linking. Trans. Assoc. Comput. Linguist. 2, 477–490 (2014)CrossRefGoogle Scholar
  5. 5.
    Faralli, S., Stilo, G., Velardi, P.: What women like: a gendered analysis of Twitter users’ interests based on a twixonomy. In: Ninth International AAAI Conference on Web and Social Media (2015)Google Scholar
  6. 6.
    Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based method. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. ACM (2011)Google Scholar
  7. 7.
    Lazic, N., Subramanya, A., Ringgaard, M., Pereira, F.: Plato: a selective context model for entity resolution. Trans. Assoc. Comput. Linguist. 3, 503–515 (2015)CrossRefGoogle Scholar
  8. 8.
    Ling, X., Singh, S., Weld, D.S.: Design challenges for entity linking. Trans. Assoc. Comput. Linguist. 3, 315–328 (2015)CrossRefGoogle Scholar
  9. 9.
    Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 233–242. ACM (2007)Google Scholar
  10. 10.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. 2, 231–244 (2014)CrossRefGoogle Scholar
  11. 11.
    Raiman, J.R., Raiman, O.M.: Deeptype: multilingual entity linking by neural type system evolution. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  12. 12.
    Schönhofen, P.: Identifying document topics using the wikipedia category network. Web Intell. Agent Syst. Int. J. 7(2), 195–207 (2009)CrossRefGoogle Scholar
  13. 13.
    Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using Wikipedia. In: AAAI, vol. 6, pp. 1419–1424 (2006)Google Scholar
  14. 14.
    Wu, C., Tygert, M., LeCun, Y.: Hierarchical loss for classification. arXiv preprint arXiv:1709.01062 (2017)
  15. 15.
    Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. arXiv preprint arXiv:1601.01343 (2016)
  16. 16.
    Zhang, J., Cao, Y., Hou, L., Li, J., Zheng, H.-T.: XLink: an unsupervised bilingual entity linking system. In: Sun, M., Wang, X., Chang, B., Xiong, D. (eds.) CCL/NLP-NABD -2017. LNCS (LNAI), vol. 10565, pp. 172–183. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69005-6_15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Xinru Zhang
    • 1
  • Huifang Xu
    • 2
  • Yixin Cao
    • 3
  • Yuanpeng Tan
    • 2
  • Lei Hou
    • 1
    Email author
  • Juanzi Li
    • 1
  • Jiaxin Shi
    • 1
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Artificial Intelligence Application DepartmentChina Electric Power Research InstituteBeijingChina
  3. 3.National University of SingaporeSingaporeSingapore

Personalised recommendations