Advertisement

Dual Templates Siamese Tracking

  • Zhiqiang Hou
  • Lilin ChenEmail author
  • Lei Pu
Conference paper
  • 120 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12046)

Abstract

In recent years, Siamese networks which is based on appearance similarity comparison strategy has attracted great attention in visual object tracking domain due to its balanced accuracy and speed. However, most Siamese networks based tracking algorithms have not considered template updates. The fixed template may cause tracking matching error and can even cause failure of object tracking. In view of this deficiency, we proposed an algorithm based on dual templates Siamese network using difference hash algorithm to determine the template update timing. First, we kept the initial frame target with stable response map score as the base template \(z_{r}\), using the difference hash algorithm to determine the dynamic template \(z_{t}\). We analyzed the candidate targets region and the two template matching results, meanwhile the result response maps were fused, which could ensure more accurate tracking results. The experiment results on the OTB-2013 and OTB-2015 and VOT2016 datasets showed that the proposed algorithm has achieved satisfactory result.

Keywords

Siamese networks Object tracking Template update Difference hash algorithm 

References

  1. 1.
    Hou, Z., Han, C.: Overview of visual tracking technology. IEEE/CAA J. Autom. Sinica (JAS). 32(4), 603–617 (2006)Google Scholar
  2. 2.
    Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)CrossRefGoogle Scholar
  3. 3.
    He, A., Luo, C., Tian, X., et al.: A twofold Siamese network for real-time object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 4834–4843 (2018)Google Scholar
  4. 4.
    Tao, R., Gavves, E., Smeulders, A.W.M.: Siamese instance search for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1420–1429 (2016)Google Scholar
  5. 5.
    Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48881-3_56CrossRefGoogle Scholar
  6. 6.
    Wang, Q., Zhu, T., Xing, J., et al.: Learning attentions: Residual attentional Siamese network for high performance online visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 4854–4863 (2018)Google Scholar
  7. 7.
    Zhu, Z., Wu, W., Zou, W., et al.: End-to-end flow correlation tracking with spatial-temporal attention [OL] (2017). https://arxiv.org/abs/1711.01124v1
  8. 8.
    Valmadre, J., Bertinetto, L., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: End-to-end representation learning for correlation filter based tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, pp. 2805–2813 (2017)Google Scholar
  9. 9.
    Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: IEEE International Conference on Computer Vision, Venice, Italy, pp. 1763–1771 (2017)Google Scholar
  10. 10.
    Wang, Q., Zhang, M., Xing, J., Gao, J., Hu, W., Maybank, S.: Do not lose the details: reinforced representation learning for high performance visual tracking. In: International Joint Conferences on Artificial Intelligence, Stockholm, Swedish (2018)Google Scholar
  11. 11.
    Li, B., Yan, J., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 8971–8980 (2018)Google Scholar
  12. 12.
    Zhu, Z., Wang, Q., Li, B., et al.: Distractor-aware Siamese networks for visual object tracking. In: European Conference on Computer Vision, Munich, Germany, pp. 101–117 (2018)Google Scholar
  13. 13.
    Li, B., Wu, W., Wang, Q., et al.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)Google Scholar
  14. 14.
    Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Real, E., Shlens, J., Mazzocchi, S., Pan, X.: YouTube-BoundingBoxes: a large high-precision human-annotated data set for object detection in video. In: IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, pp. 5296–5305 (2017)Google Scholar
  16. 16.
    Wu, Z., Yang, S., Wang, D., Sun, P.: Research on tracking and orientation of moving targets based on adaptive image enhanced difference hash algorithm. Glob. Position. Syst. 43(05), 98–104 (2018)Google Scholar
  17. 17.
    Wang, J., Hou, Z., Yu, W., Liao, X., Chen, C.: Improved TLD algorithm using image perceptual hash algorithm. J. Air Force Eng. Univ. (Nat. Sci. Edn.) 19(05), 58–64 (2018)Google Scholar
  18. 18.
    Wang, L., Huang, J., Sun, J., Wang, Q., Zhu, Y.: Improved FFT high-precision harmonic detection algorithm based on Hanning window. Power Syst. Protect. Control 40(24), 28–33 (2012)Google Scholar
  19. 19.
    Hua, Y., Shi, Y., Yang, M., Liu, Z.: Multi-scale tracking algorithm based on background suppression and foreground anti-interference. Infrared Technol. 40(11), 1098–1105 (2018)Google Scholar
  20. 20.
    Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 5, pp. 2411–2418 (2013)Google Scholar
  21. 21.
    Bertinetto, L., Valmadre, J., Golodetz, S., et al.: Staple: complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 1401–1409 (2016)Google Scholar
  22. 22.
    Danelljan, M., Hager, G., Khan, F.S.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference, British pp. 65.1–65.11 (2014)Google Scholar
  23. 23.
    Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 188–203. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_13CrossRefGoogle Scholar
  24. 24.
    Henriques, J.F., Rui, C., Martins, P., et al.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)CrossRefGoogle Scholar
  25. 25.
    Danelljan, M., Hager, G., Khan, F.S., et al.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision, Santiago, Chile, pp. 4310–4318 (2015)Google Scholar
  26. 26.
    Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflugfelder, R.: The visual object tracking VOT2016 challenge results. In: European Conference on Computer Vision WorkShop, vol. 9914, pp. 777–823 (2016)Google Scholar
  27. 27.
    Ma, C., Huang, J.B., Yang, X., et al.: Hierarchical convolutional features for visual tracking. In: IEEE International Conference on Computer Vision, Santiago, Chile, pp. 3074–3082 (2015)Google Scholar
  28. 28.
    Lee, K.M.: Locality-sensitive hashing techniques for nearest neighbor search. Int. J. Fuzzy Log. Intell. Syst. 12(4), 300–307 (2012)CrossRefGoogle Scholar
  29. 29.
    Xia, H., Wu, P., Hoi, S.C.H., et al.: Boosting multi-kernel locality-sensitive hashing for scalable image retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 55–64. ACM (2012)Google Scholar
  30. 30.
    Guo, J., Li, J.: CNN based hashing for image retrieval. arXiv preprint arXiv:1509.01354 (2015)
  31. 31.
    Wang, Y., Guo, J., Zhou, L.: Compact image hashing algorithm based on data projection dimensionality reduction mechanism and symmetric local two value model. Laser Optoelectron. Progr. 54(2), 416 (2017)Google Scholar
  32. 32.
    Yong, S.C., Park, J.H.: Image hash generation method using hierarchical histogram. Multimed. Tools Appl. 61(1), 181–194 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of ComputerXi’an University of Posts and TelecommunicationsXi’anChina
  2. 2.Information and Navigation Institute of Air Force Engineering UniversityXi’anChina
  3. 3.Shaanxi Key Laboratory of Network Data Analysis and Intelligent ProcessingXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations