Advertisement

Detection of Critical Camera Configurations for Structure from Motion Using Random Forest

  • Mario MicheliniEmail author
  • Helmut Mayer
Conference paper
  • 132 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12046)

Abstract

This paper presents an approach for the detection of critical camera configurations in unorganized image sets with (approximately) known internal camera parameters. Critical configurations are caused by an insufficient distance between cameras compared to the distance of the observed scene and can cause problems in triangulation-based structure from motion application.

We give a summary of existing techniques and propose a new approach for the detection of image pairs with a critical camera configuration based on classification using a random forest. To this end, several features characterizing the quality of the reconstructed 3D points as well as the estimated camera poses have been defined and evaluated for various configurations. The proposed approach is integrated into the structure from motion framework COLMAP demonstrating its potential on an independent real-world dataset.

Keywords

Structure from motion Camera configuration Classification Random forest Pure rotation Weak baseline 

References

  1. 1.
    Beder, C., Steffen, R.: Determining an initial image pair for fixing the scale of a 3D reconstruction from an image sequence. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 657–666. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861898_66CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefGoogle Scholar
  3. 3.
    Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR (2005)Google Scholar
  4. 4.
    Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. In: ICCV Workshop (2011)Google Scholar
  5. 5.
    Farenzena, M., et al.: Towards unsupervised reconstruction of architectural models. In: Vision, Modeling and Visualization Conference (2008)Google Scholar
  6. 6.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Förstner, W.: Quality assessment of object location and point transfer using digital image correlation techniques. In: 25.3A, pp. 197–219 (1984)Google Scholar
  8. 8.
    Frahm, J.-M., Pollefeys, M.: RANSAC for (quasi-)degenerate data (QDEGSAC). In: CVPR (2006)Google Scholar
  9. 9.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 471–478. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-57956-7_52CrossRefGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  12. 12.
    Hess-Flores, M., Knoblauch, D., Duchaineau, M.A., Joy, K.I., Kuester, F.: Ray divergence-based bundle adjustment conditioning for multi-view stereo. In: Ho, Y.-S. (ed.) PSIVT 2011. LNCS, vol. 7087, pp. 153–164. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25367-6_14CrossRefGoogle Scholar
  13. 13.
    Irani, M., Anandan, P.: Parallax geometry of pairs of points for 3D scene analysis. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 17–30. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0015520CrossRefGoogle Scholar
  14. 14.
    Kähler, O., Denzler, J.: Detection of planar patches in handheld image sequences. In: Photogrammetric Computer Vision (2006)Google Scholar
  15. 15.
    Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)zbMATHGoogle Scholar
  16. 16.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Michelini, M., Mayer, H.: Detection of critical camera configurations for structure from motion. In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-3/W1, pp. 73–78 (2014)CrossRefGoogle Scholar
  18. 18.
    Michelini, M., Mayer, H.: Efficient wide baseline structure from motion. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-3, pp. 99–106 (2016)CrossRefGoogle Scholar
  19. 19.
    Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37447-0_20CrossRefGoogle Scholar
  20. 20.
    Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)CrossRefGoogle Scholar
  21. 21.
    Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: CVPR (2016)Google Scholar
  22. 22.
    Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24670-1_40CrossRefGoogle Scholar
  23. 23.
    Toldo, R., et al.: Hierarchical structure-and-motion recovery from uncalibrated images. In: Computer Vision and Image Understanding 140.C, pp. 127–143 (2015)CrossRefGoogle Scholar
  24. 24.
    Torr, P.H.S.: An assessment of information criteria for motion model selection. In: CVPR (1997)Google Scholar
  25. 25.
    Torr, P.H.S., Fitzgibbon, A.W., Zisserman, A.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. IJCV 32(1), 27–44 (1999)CrossRefGoogle Scholar
  26. 26.
    Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations whilst estimating the fundamental matrix. Comput. Vis. Image Underst. 71(3), 312–333 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Applied Computer ScienceBundeswehr University MunichNeubibergGermany

Personalised recommendations