Advertisement

Design of an Optical Filter to Improve Green Pepper Segmentation Using a Deep Neural Network

  • Jun Yu
  • Xinzhi Liu
  • Pan Wang
  • Toru KuriharaEmail author
Conference paper
  • 75 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12047)

Abstract

Image segmentation is a challenging task in computer vision fields. In this paper, we aim to distinguish green peppers from large amounts of green leaves by using hyperspectral information. Our key aim is to design a novel optical filter to identify the bands where peppers differ substantially from green leaves. We design an optical filter as a learnable weight in front of an RGB filter with a fixed weight, and classify green peppers in an end-to-end manner. Our work consists of two stages. In the first stage, we obtain the optical filter parameters by training an optical filter and a small neural network simultaneously at the pixel level of hyperspectral data. In the second stage, we apply the learned optical filter and an RGB filter in a successive manner to a hyperspectral image to obtain an RGB image. Then we use a SegNet-based network to obtain better segmentation results at the image level. Our experimental results demonstrate that this two-stage method performs well for a small dataset and the optical filter helps to improve segmentation accuracy.

Keywords

Hyperspectral image Segmentation DNN for design Optical filter SegNet Agriculture 

Notes

Acknowledgments

This work was supported by Cabinet Office grant in aid, the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants), Japan.

References

  1. 1.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016).  https://doi.org/10.1109/TGRS.2016.2584107CrossRefGoogle Scholar
  3. 3.
    Eizentals, P., Oka, K.: 3D pose estimation of green pepper fruit for automated harvesting. Comput. Electron. Agric. 128, 127–140 (2016)CrossRefGoogle Scholar
  4. 4.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
  5. 5.
    Lehnert, C., English, A., McCool, C., Tow, A.W., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)CrossRefGoogle Scholar
  6. 6.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  7. 7.
    McCool, C., Sa, I., Dayoub, F., Lehnert, C., Perez, T., Upcroft, B.: Visual detection of occluded crop: for automated harvesting. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2506–2512. IEEE (2016)Google Scholar
  8. 8.
    Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004).  https://doi.org/10.1109/TGRS.2004.831865CrossRefGoogle Scholar
  9. 9.
    Okamoto, H., Lee, W.S.: Green citrus detection using hyperspectral imaging. Comput. Electron. Agric. 66(2), 201–208 (2009).  https://doi.org/10.1016/j.compag.2009.02.004. http://www.sciencedirect.com/science/article/pii/S0168169909000258CrossRefGoogle Scholar
  10. 10.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  11. 11.
    Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation-a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), 250 (2009)Google Scholar
  12. 12.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).  https://doi.org/10.1109/TPAMI.2016.2572683CrossRefGoogle Scholar
  13. 13.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  14. 14.
    Stigell, P., Miyata, K., Hauta-Kasari, M.: Wiener estimation method in estimating of spectral reflectance from RGB images. Pattern Recogn. Image Anal. 17(2), 233–242 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Kochi University of TechnologyKochiJapan
  2. 2.Hefei University of TechnologyHefeiChina
  3. 3.Taiyuan University of TechnologyTaiyuanChina

Personalised recommendations