Advertisement

Automated 2D Fetal Brain Segmentation of MR Images Using a Deep U-Net

  • Andrik RampunEmail author
  • Deborah Jarvis
  • Paul Griffiths
  • Paul Armitage
Conference paper
  • 98 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12047)

Abstract

Fetal brain segmentation is a difficult task yet an important step to study brain development in utero. In contrast to adult studies automatic fetal brain extraction remains challenging and has limited research mainly due to arbitrary orientation of the fetus, possible movement and lack of annotated data. This paper presents a deep learning method for 2D fetal brain extraction from Magnetic Resonance Imaging (MRI) data using a convolution neural network inspired from the U-Net architecture [1]. We modified the network to suit our segmentation problem by adding deeper convolutional layers allowing the network to capture finer textural information and using more robust functions to avoid overfitting and to deal with imbalanced foreground (brain) and background (non-brain) samples. Experimental results using 200 normal fetal brains consisting of over 11,000 2D images showed that the proposed method produces Dice and Jaccard coefficients of \(92.8 \pm 6.3\%\) and \(86.7 \pm 7.8\%\), respectively providing a significant improvement over the original U-Net and its variants.

Keywords

Fetal brain segmentation U-Net Deep learning MRI CNN 

References

  1. 1.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  2. 2.
    Makropoulos, A., Counsell, S.J., Rueckert, D.: A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 170, 231–248 (2018)CrossRefGoogle Scholar
  3. 3.
    Anquez, J., Angelini, E.D., Bloch, I.: Automatic segmentation of head structures on fetal MRI. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, pp. 109–112 (2009).  https://doi.org/10.1109/ISBI.2009.5192995
  4. 4.
    Taleb, Y., Schweitzer, M., Studholme, C., Koob, M., Dietemann, J.L., Rousseau, F.: Automatic template-based brain extraction in fetal MR images (2013)Google Scholar
  5. 5.
    Link, D., et al.: Automatic measurement of fetal brain development from magnetic resonance imaging: new reference data. Fetal Diagn. Ther. 43(2), 113–122 (2018)CrossRefGoogle Scholar
  6. 6.
    Ison, M., Dittrich, E., Donner, R., Kasprian, G., Prayer, D., Langs, G.: Fully automated brain extraction and orientation in raw fetal MRI. In: MICCAI Workshop on Paediatric and Perinatal Imaging 2012 (PaPI 2012) (2012)Google Scholar
  7. 7.
    Alansary, A., et al.: Automatic brain localization in fetal MRI using superpixel graphs. In: Proceedings Machine Learning Meets Medical Imaging, pp. 13–22 (2015)Google Scholar
  8. 8.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)CrossRefGoogle Scholar
  9. 9.
    Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101, 633–643 (2014)CrossRefGoogle Scholar
  10. 10.
    Kainz, B., Keraudren, K., Kyriakopoulou, V., Rutherford, M., Hajnal, J.V., Rueckert, D.: Fast fully automatic brain detection in fetal MRI using dense rotation invariant image descriptors. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, pp. 1230–1233 (2014).  https://doi.org/10.1109/ISBI.2014.6868098
  11. 11.
    Rampun, A., et al.: Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network. Med. Image Anal. 57, 1–17 (2019)CrossRefGoogle Scholar
  12. 12.
    Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 76, 45–67 (2018)CrossRefGoogle Scholar
  13. 13.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  14. 14.
    Rampun, A., Scotney, B.W., Morrow, P.J., Wang, H.: Breast mass classification in mammograms using ensemble convolutional neural networks. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, pp. 1–6 (2018)Google Scholar
  15. 15.
    Mohseni Salehi, S.S., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging. IEEE Trans. Med. Imag. 36(11), 2319–2330 (2017)CrossRefGoogle Scholar
  16. 16.
    Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imag. 36(2), 674–683 (2017).  https://doi.org/10.1109/TMI.2016.2621185CrossRefGoogle Scholar
  17. 17.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)CrossRefGoogle Scholar
  18. 18.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  19. 19.
    Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv preprint arXiv:1511.07289
  20. 20.
    Hinton, G.: Neural Networks for Machine Learning - Lecture 6a - Overview of mini-batch gradient descent. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 4 July 2019
  21. 21.
    Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00889-5_1CrossRefGoogle Scholar
  22. 22.
    Jarvis, D.A., Finney, C.R., Griffiths, P.D.: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging. Eur Radiol. 29(7), 3488–3495 (2019)CrossRefGoogle Scholar
  23. 23.
    Griffiths, P.D., et al.: A on behalf of the MERIDIAN collaborative group. (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389, 538–546 (2017)CrossRefGoogle Scholar
  24. 24.
    Griffiths, P.D., Jarvis, D., McQuillan, H., Williams, F., Paley, M., Armitage, P.: MRI of the foetal brain using a rapid 3D steady-state sequence. Br. J. Radiol. 86(1030), 20130168 (2013)CrossRefGoogle Scholar
  25. 25.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular DiseaseUniversity of SheffieldSheffieldUK

Personalised recommendations