Nanotechnology: A Breakthrough in Agronomy

  • Madeeha Ansari
  • Kiran Shahzadi
  • Shakil Ahmed


Agronomy is the backbone of number of developing countries while nanotechnology is an advance technology growing vastly from past few decades. Nanotechnology in combination with agronomic techniques has a great potential to promote the agricultural products where conventional methods are not able to increase the productivity at the required pace. The significant interest of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides with enhanced absorption and activity. It also includes the use of nanobiosensors to track products and nutrients levels to increase the productivity without contamination of soil and water. Use of nanomaterials can reduce the spread of chemicals, lessen the soil toxicity, minimize nutrient losses in application of fertilizers and ultimately can increase the yield. It provides novel tools for the rapid disease detection and protection against pathogens. Plenty of options are also available for exploring the practical applications of nanotechnology in tissue engineering. In short, nanotechnology and nanoparticles are going to establish the future of Agronomy worldwide.


Agriculture Agronomy Nanofertilizers Nanoparticles Nanotechnology 


  1. Abboud AMA (2018) Fungal biosynthesis of silver nanoparticles and their role in control of Fusarium wilt of sweet pepper and soil-borne fungi in vitro. Int J Pharmacol 14(6):773–780CrossRefGoogle Scholar
  2. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  3. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257PubMedCrossRefGoogle Scholar
  4. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318CrossRefGoogle Scholar
  5. Ahmed F, Arshi N, Kumar S (2013) Chapter 11: Nanobiotechnology: scope and potential crop improvement. In: Crop improvement under adverse conditions. Springer, New York, NY, pp 245–269CrossRefGoogle Scholar
  6. Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baharvandi A, Soleimani MJ, Zamani P (2014) Mycosynthesis of nanosilver particles using extract of Alternaria alternate. Arch Phytopathol Plant Protect 48(4):313–318CrossRefGoogle Scholar
  8. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305CrossRefGoogle Scholar
  9. Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103(2):253–258PubMedCrossRefGoogle Scholar
  10. Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for cereals. Doctoral dissertation, Sumy State UniversityGoogle Scholar
  11. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  12. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141PubMedCrossRefGoogle Scholar
  13. Boisseau P, Loubaton B (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12(7):620–636CrossRefGoogle Scholar
  14. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155CrossRefGoogle Scholar
  15. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Reg Toxicol Pharm 53(1):52–62CrossRefGoogle Scholar
  16. Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469(7330):393–396PubMedCrossRefGoogle Scholar
  17. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B: Biointerfaces 83(1):42–48PubMedCrossRefGoogle Scholar
  18. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583PubMedCrossRefGoogle Scholar
  19. Chhipa H, Joshi P (2016) Nanofertilizers, nanopesticides and nanosensors in agriculture. In: Nanoscience in food and agriculture, vol 1. Springer, Cham, pp 247–282CrossRefGoogle Scholar
  20. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151Google Scholar
  21. Cross KM, Lu Y, Zheng T, Zhan J, McPherson G, John V (2009) Water decontamination using iron and iron oxide nanoparticles. In: Nanotechnology applications for clean water. William Andrew Publishing, New York, pp 347–364CrossRefGoogle Scholar
  22. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91PubMedCrossRefGoogle Scholar
  23. Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212CrossRefGoogle Scholar
  24. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081CrossRefGoogle Scholar
  25. Farmen L (2009) Commercialization of nanotechnology for removal of heavy metals in drinking water. In: Nanotechnology applications for clean water. William Andrew Publishing, New York, pp 115–130CrossRefGoogle Scholar
  26. Fernandez-Acero FJ, Carbú M, Garrido C, Vallejo I, Cantoral JM (2007) Proteomic advances in phytopathogenic fungi. Curr Proteom 4(2):79–88CrossRefGoogle Scholar
  27. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Element Res 111(1–3):239–253CrossRefGoogle Scholar
  28. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedCrossRefGoogle Scholar
  29. Giordani T, Fabrizi A, Guidi L, Natali L, Giunti G, Ravasi F et al (2012) Response of tomato plants exposed to treatment with nanoparticles. Int J Environ Qual 8(8):27–38Google Scholar
  30. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408CrossRefGoogle Scholar
  31. Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc B Biol Sci 369(1639):20120273CrossRefGoogle Scholar
  32. González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138CrossRefGoogle Scholar
  33. Hager H (2011). Nanotechnology in agriculture.
  34. Herrera BR, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A 91(2):241–246CrossRefGoogle Scholar
  35. Hett A (2004) Nanotechnology: small matter, many unknowns. Swiss Reinsurance Company, ZurichGoogle Scholar
  36. Hirano S (1997) Application of chitin and chitosan in the ecological and environmental fields. In: MFA G (ed) Application of chitin and chitosan. CRC Book, Boca Raton, FLGoogle Scholar
  37. Holdren JP (2011) The national nanotechnology initiative strategic plan report at subcommittee on nanoscale science, engineering and technology of committee on technology. National Science Technology Council (NSTC), ArlingtonGoogle Scholar
  38. Hurst SJ, Lytton-Jean AK, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78(24):8313–8318PubMedPubMedCentralCrossRefGoogle Scholar
  39. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406PubMedPubMedCentralGoogle Scholar
  40. Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC (2016) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol 44(6):1576–1581PubMedCrossRefGoogle Scholar
  41. Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran LSP (2019) Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arab J Chem 12(7):1108–1120CrossRefGoogle Scholar
  42. Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45(3):245–279CrossRefGoogle Scholar
  43. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71(1):133–137PubMedCrossRefGoogle Scholar
  44. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79(3):594–598PubMedCrossRefGoogle Scholar
  45. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefGoogle Scholar
  46. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84Google Scholar
  47. Kulkarni VD, Kulkarni PS (2013) Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Int J Chem Stud 1(3):1–4Google Scholar
  48. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445CrossRefGoogle Scholar
  49. Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mat Bioenergy 2(1):1–24CrossRefGoogle Scholar
  50. Kumar DA, Palanichamy V, Roopan SM (2014a) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 127:168–171PubMedCrossRefGoogle Scholar
  51. Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014b) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Indus Crops Prod 52:562–566CrossRefGoogle Scholar
  52. Lang H, May RA, Iversen BL, Chandler BD (2003) Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J Am Chem Soc 125(48):14832–14836PubMedCrossRefGoogle Scholar
  53. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88(11):1971–1977Google Scholar
  54. Liu J, Tian S, Meng X, Xu Y (2007) Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol Technol 44(3):300–306CrossRefGoogle Scholar
  55. Lyons K, Scrinis G (2009) Under the regulatory radar? Nanotechnologies and their impacts for rural Australia. Tracking rural change: community, policy and technology in Australia, New Zealand and Europe. Australian National University E Press, Canberra, pp 151–171Google Scholar
  56. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13Google Scholar
  57. Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:e37CrossRefGoogle Scholar
  58. Matthews GA (2000) Pests, pesticides and pest management. In: Mason J (ed) Highlights in environmental research. Imperial College Press, London, pp 165–189CrossRefGoogle Scholar
  59. McClung CR (2014) Making hunger yield. Science 344(6185):699–700PubMedCrossRefGoogle Scholar
  60. Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 62(11):45–48CrossRefGoogle Scholar
  61. Mitra S, Patra P, Pradhan S, Debnath N, Dey KK, Sarkar S et al (2015) Microwave synthesis of ZnO@ mSiO2 for detailed antifungal mode of action study: understanding the insights into oxidative stress. J Coll Interf Sci 444:97–108CrossRefGoogle Scholar
  62. Mukherjee A, Sinha I, Das R (2015) Application of nanotechnology in agriculture: future prospects. In: Outstanding Young Chemical Engineers (OYCE) Conference, March, pp. 13–14Google Scholar
  63. Mukhopadhyay SS (2005) Weathering of soil minerals and distribution of elements: pedochemical aspects 1. Clay Res 24(2):183–199Google Scholar
  64. Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26Google Scholar
  65. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  66. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590CrossRefGoogle Scholar
  67. Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID et al (2001) Submicrometer metallic barcodes. Science 294(5540):137–141PubMedCrossRefGoogle Scholar
  68. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct 4(4):623–629Google Scholar
  69. Noruzi M (2015) Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng 38(1):1–14PubMedCrossRefGoogle Scholar
  70. Österholm P, Åström M (2004) Quantification of current and future leaching of sulfur and metals from boreal acid sulfate soils, western Finland. Soil Res 42(6):547–551CrossRefGoogle Scholar
  71. Pimentel D (2009) Pesticides and pest control. In: Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87CrossRefGoogle Scholar
  72. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A Physicochem Eng Asp 377(1–3):212–216CrossRefGoogle Scholar
  73. Presley DR, Ransom MD, Kluitenberg GJ, Finnell PR (2004) Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Sci Soc Am J 68(6):1916–1926CrossRefGoogle Scholar
  74. Qu J, Luo C, Hou J (2011a) Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. Micro Nano Lett 6(3):174–176CrossRefGoogle Scholar
  75. Qu J, Yuan X, Wang X, Shao P (2011b) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ Pollut 159(7):1783–1788PubMedCrossRefGoogle Scholar
  76. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293CrossRefPubMedGoogle Scholar
  77. Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4(1):93CrossRefGoogle Scholar
  78. Ramesh M, Anbuvannan M, Viruthagiri G (2015) Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:864–870PubMedCrossRefGoogle Scholar
  79. Ramya M, Subapriya MS (2012) Green synthesis of silver nanoparticles. Int J Pharm Med Biol Sci 1(1):54–61Google Scholar
  80. Rashmi K, Krishnaveni T, Ramanamurthy S, Mohan PM (2004) Characterization of cobalt nanoparticle from a cobalt resistant strain of Neurospora crassa. In: International symposium of research students on materials science and engineering, Dec 2004, ChennaiGoogle Scholar
  81. Reddy GAK, Joy JM, Mitra T, Shabnam S, Shilpa T (2012) Nano silver–a review. Int J Adv Pharm 2(1):09–15Google Scholar
  82. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482PubMedCrossRefGoogle Scholar
  83. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002CrossRefGoogle Scholar
  84. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2009) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118(3):407–413PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891CrossRefGoogle Scholar
  86. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  87. Schabes PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29(1):95–99CrossRefGoogle Scholar
  88. Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91(4):512–520PubMedCrossRefGoogle Scholar
  89. Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9(1):17–18CrossRefGoogle Scholar
  90. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 4:83–92Google Scholar
  92. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh MEA, Yang DC (2015a) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 10:2567PubMedPubMedCentralGoogle Scholar
  93. Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC (2015b) Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 4:234741Google Scholar
  94. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016a) Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol 44(6):1469–1474PubMedCrossRefGoogle Scholar
  95. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016b) Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol 44(6):1569–1575PubMedCrossRefGoogle Scholar
  96. Sintubin L, De Gusseme B, Van der Meeren P, Pycke BF, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91(1):153–162PubMedCrossRefGoogle Scholar
  97. Sneha K, Sathishkumar M, Lee SY, Bae MA, Yun YS (2011) Biosynthesis of Au nanoparticles using cumin seed powder extract. J Nanosci Nanotechnol 11(2):1811–1814PubMedCrossRefGoogle Scholar
  98. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101Google Scholar
  99. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84PubMedCrossRefGoogle Scholar
  100. Subhankari I, Nayak PL (2013a) Synthesis of copper nanoparticles using Syzygium aromaticum (cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17Google Scholar
  101. Subhankari I, Nayak PL (2013b) Antimicrobial activity of copper nanoparticles synthesized by ginger (Zingiber officinale) extract. World J Nano Sci Technol 2(1):10–13Google Scholar
  102. Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):033001CrossRefGoogle Scholar
  103. Veeraputhiran V (2013) Bio-catalytic synthesis of silver nanoparticles. Int J Chem Tech Res 5(5):2555–2562Google Scholar
  104. Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554CrossRefGoogle Scholar
  105. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132PubMedGoogle Scholar
  106. Witanachchi S, Merlak M, Mahawela P (2012) Nanotechnology solutions to greenhouse and urban agriculture. Technol Innov 14(2):209–217CrossRefGoogle Scholar
  107. Xiao L, Liu C, Chen X, Yang Z (2016) Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol 90:76–83PubMedCrossRefGoogle Scholar
  108. Yadollahi A, Arzani K, Khoshghalb H (2009) The role of nanotechnology in horticultural crops postharvest management. In: Southeast Asia symposium on quality and safety of fresh and fresh-cut produce, vol 875, pp 49–56Google Scholar
  109. Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015) Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 137:250–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Madeeha Ansari
    • 1
  • Kiran Shahzadi
    • 2
  • Shakil Ahmed
    • 1
  1. 1.Department of BotanyThe University of PunjabLahorePakistan
  2. 2.Department of BotanyLahore College for Women UniversityLahorePakistan

Personalised recommendations