Advertisement

Decomposing the Parameter Space of Biological Networks via a Numerical Discriminant Approach

  • Heather A. Harrington
  • Dhagash Mehta
  • Helen M. Byrne
  • Jonathan D. HauensteinEmail author
Conference paper
  • 68 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1125)

Abstract

Many systems in biology (as well as other physical and engineering systems) can be described by systems of ordinary differential equation containing large numbers of parameters. When studying the dynamic behavior of these large, nonlinear systems, it is useful to identify and characterize the steady-state solutions as the model parameters vary, a technically challenging problem in a high-dimensional parameter landscape. Rather than simply determining the number and stability of steady-states at distinct points in parameter space, we decompose the parameter space into finitely many regions, the number and structure of the steady-state solutions being consistent within each distinct region. From a computational algebraic viewpoint, the boundary of these regions is contained in the discriminant locus. We develop global and local numerical algorithms for constructing the discriminant locus and classifying the parameter landscape. We showcase our numerical approaches by applying them to molecular and cell-network models.

Keywords

Parameter landscape Numerical algebraic geometry Discriminant locus Cellular networks 

Notes

Acknowledgement

We thank J. Byrne and G. Moroz for helpful discussions. JDH was supported in part by NSF ACI 1460032 and CCF 1812746, Sloan Research Fellowship, and Army Young Investigator Program (YIP). HAH acknowledges funding from EPSRC Fellowship EP/K041096/1, Royal Society University Research Fellowship, and AMS Simons Travel Grant.

References

  1. 1.
    Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory II classification and applications. In: Arnol’d, V.I. (ed.) Dynamical Systems VIII. Encyclopaedia of Mathematical Sciences, vol. 39, pp. 1–235. Springer, Heidelberg (1993).  https://doi.org/10.1007/978-3-662-06798-7_1CrossRefGoogle Scholar
  2. 2.
    Bates, D.J., Brake, D.A., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: On computing a cell decomposition of a real surface containing infinitely many singularities. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 246–252. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44199-2_39CrossRefGoogle Scholar
  3. 3.
    Bates, D.J., Brake, D.A., Niemerg, M.E.: Paramotopy: parameter homotopies in parallel (2015). http://paramotopy.com/
  4. 4.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision pathtracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM, Philadelphia (2013)CrossRefGoogle Scholar
  6. 6.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler II, C.W.: Software for numerical algebraic geometry: a paradigm and progress towards its implementation. In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry, vol. 148, pp. 1–14. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-78133-4_1CrossRefzbMATHGoogle Scholar
  7. 7.
    Besana, G.M., Di Rocco, S., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Cell decomposition of almost smooth real algebraic surfaces. Numer. Algorithms 63(4), 645–678 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Broer, H.W., Golubitsky, M., Vegter, G.: The geometry of resonance tongues: a singularity theory approach. Nonlinearity 16(4), 1511–1538 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, T., Lee, T.-L., Li, T.-Y.: Hom4PS-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 183–190. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44199-2_30CrossRefGoogle Scholar
  11. 11.
    Clevers, H.: Stem Cells. What is an adult stem cell? Science 350(6266), 1319–1320 (2015)CrossRefGoogle Scholar
  12. 12.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975).  https://doi.org/10.1007/3-540-07407-4_17CrossRefGoogle Scholar
  13. 13.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005).  https://doi.org/10.1007/b138611CrossRefzbMATHGoogle Scholar
  14. 14.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer 30, 265–284 (1981)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Farrell, P.E., Beentjes, C.H.L., Birkisson, A.: The computation of disconnected bifurcation diagrams (2016). arXiv:1603.00809
  17. 17.
    Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., Artavanis-Tsakonas, S.: Notch signals control the fate of immature progenitor cells in the intestine. Nature 435(7044), 964–968 (2005)CrossRefGoogle Scholar
  18. 18.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994).  https://doi.org/10.1007/978-0-8176-4771-1CrossRefzbMATHGoogle Scholar
  19. 19.
    Glassner, A.S. (ed.): An Introduction to Ray Tracing. Academic Press Ltd., London (1989)zbMATHGoogle Scholar
  20. 20.
    Glendinning, P.: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  21. 21.
    Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Volume I. Applied Mathematical Sciences, vol. 51. Springer, New York (1985).  https://doi.org/10.1007/978-1-4612-5034-0CrossRefzbMATHGoogle Scholar
  22. 22.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, Volume II. Applied Mathematical Sciences, vol. 69. Springer, New York (1988).  https://doi.org/10.1007/978-1-4612-4574-2CrossRefzbMATHGoogle Scholar
  23. 23.
    Griffin, Z.A., Hauenstein, J.D.: Real solutions to systems of polynomial equations and parameter continuation. Adv. Geom. 15(2), 173–187 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gross, E., Harrington, H.A., Rosen, Z., Sturmfels, B.: Algebraic systems biology: a case study for the Wnt pathway. Bull. Math. Biol. 78(1), 21–51 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Grün, D., et al.: Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568), 251–255 (2015)CrossRefGoogle Scholar
  26. 26.
    Hanan, W., Mehta, D., Moroz, G., Pouryahya, S.: Stability and bifurcation analysis of coupled Fitzhugh-Nagumo oscillators. Extended Abstract Published in the Joint Conference of ASCM 2009 and MACIS 2009, Japan (2009). arXiv:1001.5420 (2010)
  27. 27.
    Hao, W., Hauenstein, J.D., Hu, B., Sommese, A.J.: A three-dimensional steady-state tumor system. Appl. Math. Comput. 218(6), 2661–2669 (2011)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Hauenstein, J.D., Sommese, A.J.: Witness sets of projections. Appl. Math. Comput. 217(7), 3349–3354 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Softw. 38(4), 28 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comput. Math. 13(3), 371–403 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Hernandez-Vargas, E.A., Mehta, D., Middleton, R.H.: Towards modeling HIV long term behavior. IFAC Proc. Vol. 44(1), 581–586 (2011)CrossRefGoogle Scholar
  32. 32.
    Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636–667 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemp. Math. 448, 183–205 (2007). Algebra, Geometry and Their InteractionsMathSciNetCrossRefGoogle Scholar
  34. 34.
    Montaldi, J.: The path formulation of bifurcation theory. In: Chossat, P. (ed.) Dynamics, Bifurcation and Symmetry. NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 437, pp. 259–278. Kluwer, Dordrecht (1994).  https://doi.org/10.1007/978-94-011-0956-7_21CrossRefzbMATHGoogle Scholar
  35. 35.
    Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Pettigrew, D.B., Smolen, P., Baxter, D.A., Byrne, J.H.: Dynamic properties of regulatory motifs associated with induction of three temporal domains of memory in Aplysia. J. Comput. Neuro. 18(2), 163–181 (2005)CrossRefGoogle Scholar
  37. 37.
    Piret, K., Verschelde, J.: Sweeping algebraic curves for singular solutions. J. Comput. Appl. Math. 234(4), 1228–1237 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Simon, P.L., Farkas, H., Wittmann, M.: Constructing global bifurcation diagrams by the parametric representation method. J. Comput. Appl. Math. 108(1–2), 157–176 (1999)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sommese, A.J., Wampler II, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Publishing Co., Pte. Ltd., Hackensack (2005)CrossRefGoogle Scholar
  40. 40.
    Song, H., Smolen, P., Av-Ron, E., Baxter, D.A., Byrne, J.H.: Bifurcation and singularity analysis of a molecular network for the induction of long-term memory. Biophys. J. 90(7), 2309–2325 (2006)CrossRefGoogle Scholar
  41. 41.
    Sprinzak, D., et al.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294), 86–90 (2010)CrossRefGoogle Scholar
  42. 42.
    Sturmfels, B.: Solving Systems of Polynomial Equations. CBMS Regional Conference Series in Mathematics, vol. 97. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (2002)Google Scholar
  43. 43.
    Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2), 251–276 (1999)CrossRefGoogle Scholar
  44. 44.
    Visvader, J.E., Clevers, H.: Tissue-specific designs of stem cell hierarchies. Nat. Cell Biol. 18(4), 349–355 (2016)CrossRefGoogle Scholar
  45. 45.
    Wampler, C., Sommese, A., Morgan, A.: Numerical continuation methods for solving polynomial systems arising in kinematics. J. Mech. Des. 112(1), 59–68 (1990)CrossRefGoogle Scholar
  46. 46.
    Xia, B.: Discoverer: a tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41(3), 102–103 (2007)CrossRefGoogle Scholar
  47. 47.
    Yeung, T.M., Chia, L.A., Kosinski, C.M., Kuo, C.J.: Regulation of self-renewal and differentiation by the intestinal stem cell niche. Cell. Mol. Life Sci. 68(15), 2513–2523 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Heather A. Harrington
    • 1
  • Dhagash Mehta
    • 2
  • Helen M. Byrne
    • 1
  • Jonathan D. Hauenstein
    • 2
    Email author
  1. 1.Mathematical InstituteThe University of OxfordOxfordUK
  2. 2.Department of Applied and Computational Mathematics and StatisticsUniversity of Notre DameNotre DameUSA

Personalised recommendations