Effect of Thermal Loading on Various Types of Wood Beams

  • Stanislava GašpercováEmail author
  • Miroslava Vandlíčková
Conference paper


The paper deals with the experimental examination of flame burning on mass loss for the two types of wood beams - solid wood beam and glue laminated spruce wood timber (glulam). As for the glulam, the paper looks into the effect of the number of joints on wood burning. All samples have the same dimensions of 80 × 40 × 170 mm and moisture level of 15%. The samples are divided into three groups - glued laminated timber, glue and cross-laminated samples combined and solid wood samples. During the experiment, the samples are exposed to a flame for 10 min and the mass loss is recorded in 20 s intervals. Based on the values, the average mass loss is calculated for each set of samples. The conclusion consists of an evaluation and final findings.


Glue laminated timber Solid wood Flame burning Mass loss 


  1. 1.
    Osvald A, Štefko J (2013) Model fire of two-storey wooden building. Šmíra-print, Ostrava, p 129Google Scholar
  2. 2.
    Kadlicová P et al (2019) Effect of thermal and retarding treatment on flammability rate of tropical tree species. In: Wood research, Bratislava, pp 117–126 (2019)Google Scholar
  3. 3.
    Osvaldova LM, Gašparík M, Sotomayor Castellanos JR, Markert F, Kadlicová P, Čekovská H (2018) Effect of thermal treatment on selected fire safety features of tropical wood. In: Communications, Žilina, pp 3–7Google Scholar
  4. 4.
    Gaff M et al (2019) The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L.f) wood. In: Construction and building materials, pp 551–558Google Scholar
  5. 5.
    Makovická Osvaldová L, Osvald A (2015) New methods in the evaluation of flammability properties. In: Production management and engineering sciences, Tatranská Štrba, Slovakia, pp 503–508Google Scholar
  6. 6.
    Bučko J, Klaudová A, Kačík F (1994) Vacuumtrockung des Laub- und Nadelholzes. In: Theorie und praxis der Vacuum-Schnittholztrocknung. In: Internationales Wissen-schatliches symposium. Zvolen: Technická univerzita vo Zvolene, pp 96–104Google Scholar
  7. 7.
    Fengel D, Wegener G (1989) Wood. Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Germany, pp 26–226Google Scholar
  8. 8.
    Comben AJ (1964) The effect of low temperatures on the strength and elastic properties of timber. In: Wood science, pp 44–55Google Scholar
  9. 9.
    Kačík F, Marková I, Osvald A (1999) The changes of lignin in burning of spruce wood. In: Cellulose chemistry and technology, pp 267–275Google Scholar
  10. 10.
    Chovanec D, Osvald A (1992) Spruce wood structure changescaused by flame and radiant source. Zvolen, p 62Google Scholar
  11. 11.
    Gerhards CC (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. In: Wood and fiber, pp 4–36Google Scholar
  12. 12.
    Iringová A (2017) Lightweight building envelopes in prefabricated buildings in terms of fire resistance. In: XXVI R-S-P seminar 2017 theoretical foundation of civil engineering, Warsaw, PolandGoogle Scholar
  13. 13.
    STN EN 1995-1-2 Eurocode 5: Design of Timber Structures – Part 1-2: General Structural Fire Design (2004)Google Scholar
  14. 14.
    STN EN ISO 11925-2 Reaction to fire tests. Ignitability of products subjected to direct impingement of flame. Part 2: Single-flame source test (2011)Google Scholar
  15. 15.
    Huntier Z (1995) Analyse des brandverhaltens von holz und holzwerkstoffen unter berücksichtigung des einsatzes von feuerschutzmitteln. Disertation thesis, Buchverlag, Gräfelfing, p 114Google Scholar
  16. 16.
    Ladomerský J et al (2000) Energy and environment. Zvolen, Slovakia, p 184Google Scholar
  17. 17.
    Schaffer EL (1973) Elevated temperature effect on the longitudinal mechanical properties of wood. Disertation thesis, Wisconsin, USAGoogle Scholar
  18. 18.
    Tran HC, White RH (1992) Burning rate of solid wood measured in a heat release rate calorimeter. In: Fire and materials, pp 197–206Google Scholar
  19. 19.
    Makovická Osvaldová L, Osvald A, Mitrenga P et al (2015) Non-normalized evaluation methods of retarding effects of fire retardants for wood. In: 11th international symposium on selected processes at the wood proceedings, Dudince, SlovakiaGoogle Scholar
  20. 20.
    BSH beams: Product information. [online]. [cite 2019-7-7].
  21. 21.
    Goring DAI (1963) Thermal softening of lignin, hemicelluloses and cellulose, p 517Google Scholar
  22. 22.
    Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRS Press, LondonGoogle Scholar
  23. 23.
    Osvald A (1997) Fire-technical propertiers of wood and wood-based materials. Zvolen, Slovakia, pp 17–30Google Scholar
  24. 24.
    Horský D, Osvald A (1985) Methods of determination of fire-technical properties of wood and wood materials. Zvolen, Slovakia, p 169Google Scholar
  25. 25.
    Östman B (1985) Wood tensile strength of temperatures and moisture content simulating fire conditions. In: Wood science and technology, pp 103–116Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stanislava Gašpercová
    • 1
    Email author
  • Miroslava Vandlíčková
    • 1
  1. 1.Faculty of Security EngineeringUniversity of ŽilinaŽilinaSlovak Republic

Personalised recommendations