Advertisement

Analysis of Spatial Comprehension Through a Retrospective Study of Its Effects Among First Year Electrical Engineering Students

  • Manuel-Damián Marín-GranadosEmail author
  • Fernando Gómez-Hermosa
  • María-del-Carmen Ladrón-de-Guevara-López
  • Laia Miravet-Garret
  • Francisco-Javier Soto-Lara
Conference paper
  • 131 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

To achieve the competences required by engineering students, spatial reasoning skills—understood as the ability to mentally visualise, position, and manipulate an object—are of critical importance. Whilst some authors regard these skills to be innate, other studies show that these can be trained with interactive exercises. The objective of the present study is to identify the impact of these skills in our students, regardless of the metric with which these competences are measured. In the School of Industrial Engineering at the University of Malaga, students took part in a practical exercise in spatial reasoning by reconstructing 3D objects from 2D images. In the present study, the results of more than 400 engineering students were analysed during the periods of the 2012/13 and 2018/19 courses. In addition to describing the time course of the results obtained, we also compared the improvements in performance over time.

Keywords

Spatial reasoning Spatial ability Spatial vision Graphic expression 

Notes

Acknowledgments

This study has been made possible by the support of the Educational Innovation Project PIE011-1719 of the University of Malaga.

References

  1. 1.
    McGee, M.G.: Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychol. Bull. 89, 889–918 (1979)CrossRefGoogle Scholar
  2. 2.
    Beltrán Polaina, J.M.: Sistema diédrico. Técnicas educativas con ayudas 3D en el espacio real, y su simulación en el espacio virtual. Rev. Medios y Educ. 36, 151–170 (2010)Google Scholar
  3. 3.
    Cohen, C.A., Hegarty, M.: Inferring cross sections of 3D objects: a new spatial thinking test. Learn. Individ. Differ. 22(6), 868–874 (2012)CrossRefGoogle Scholar
  4. 4.
    David, L.T.: Training of spatial abilities through computer games – results on the relation between game’s task and psychological measures that are used. Procedia - Soc. Behav. Sci. 33, 323–327 (2012)CrossRefGoogle Scholar
  5. 5.
    Hauptman, H.: Computers & education enhancement of spatial thinking with virtual spaces 1, 0. Comput. Educ. 54(1), 123–135 (2010)CrossRefGoogle Scholar
  6. 6.
    Bishop, A.: Space and geometry. Acquis. Math. Concepts Process. 176–204 (1983)Google Scholar
  7. 7.
    Clements, M.A.: The question of how spatial ability is defined and its relevance to math education. 15, 8–20 (1983)Google Scholar
  8. 8.
    Lohman, D.F.: Spatial ability: review and re-analysis of the correlational literature. Stanford University (1989)Google Scholar
  9. 9.
    Tartre, L.A.: Spatial orientation skill and mathematical problem solving. J. Res. Math. Educ. 21(3), 216–229 (1990)CrossRefGoogle Scholar
  10. 10.
    Hauptman, H., Cohen, A.: The synergetic effect of learning styles on the interaction between virtual environments and the enhancement of spatial thinking. Comput. Educ. 57(3), 2106–2117 (2011)CrossRefGoogle Scholar
  11. 11.
    Casati Calzada, M.J., Rúa Armesto, J.J., Pérez Benedito, J.L., Aliaga Maraver, J.J., Pérez Álvarez, J.: Metodologías activas como mejora de la visión espacial. VI Jornadas Innovación Universitaria, pp. 1–12. Universidad de Málaga (2009)Google Scholar
  12. 12.
    Melián Díaz, D., Carbonell Carrera, C., Saorín Pérez, J.L., de la Torre, Cantero J.L., Martín Dorta, N.: Fabricación digital de maquetas para la mejora de la interpretación cartográfica y el fomento de la competencia creativa. ABE 1, 11–26 (2017)Google Scholar
  13. 13.
    Martín-Gutierrez, J., Trujillo, R., Acosta-gonzalez, M.M.: Augmented reality application assistant for spatial ability training. HMD vs computer screen use study. Procedia - Soc. Behav. Sci. 93, 49–53 (2013)CrossRefGoogle Scholar
  14. 14.
    García Domínguez, M., Martín Gutiérrez, J., Roca González, C., Mato Corredeaguas, M.C.: Methodologies and tools to improve spatial ability. 51, 736–744 (2012)Google Scholar
  15. 15.
    Ha, O., Fang, N.. Development of interactive 3D tangible models as teaching aids to improve students. In: Spatial Ability in STEM Education, pp. 13–15 (2013)Google Scholar
  16. 16.
    Appelbaum, L., Cain, M., Darling, E., Mitroff, S.: La reproducción de videojuegos de acción está asociada a una mejor sensibilidad visual, pero no a alateraciones en la memoria sensorial visual. Atención, Percepción y Psicofísica 75(6), 1161–1167 (2013)Google Scholar
  17. 17.
    Brunvoll, J., Cyvin, B., Cyvin, E., Cyvin, S., Paus, A., Stolevik, M., Stolevik, R.: The computerized SOMA cube. Comput. Math. Appl. 128, 113–121 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kelly, W.F.: Measurement of Spatial Ability in an Introductory Graphic Communications Course (2013)Google Scholar
  19. 19.
    Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Motor Skills 47, 599–601 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of MálagaMálagaSpain

Personalised recommendations