Advertisement

Plant Carbon Economies and the Dynamics of Wildland Fuels

  • Víctor Resco de Dios
Chapter
  • 28 Downloads
Part of the Managing Forest Ecosystems book series (MAFE, volume 36)

Abstract

Fuel is anything that can burn. In a wildfire, fuel will be largely composed of either plant tissues or dead plant matter. There are marked differences in growth forms between plants and in the functional attributes that occur within and across growth forms. Plant diversity leads to differences in fuel composition and structure, and consequently, it may exert cascading effects on fire behavior. Fire scientists and managers are well aware of the different structural attributes that may affect behavior, but understanding why structural differences occur across plant species or plant functional types may be less well understood. In this chapter, we will describe plant growth and seasonal trait dynamics in order to understand the dynamics of wildland fuel formation and its variation across vegetation types.

References

  1. Albini FA (1976) Estimating wildfire behavior and effects. USDA Forest Service, Intermountain Research Station, General technical report INT-30 Ogden, UT, 23 ppGoogle Scholar
  2. Alessio GA, Peñuelas J, Llusià J, Ogaya R, Estiarte M, Lillis MD (2008) Influence of water and terpenes on flammability in some dominant Mediterranean species. Int J Wildland Fire 17:274–286CrossRefGoogle Scholar
  3. Barboni T, Cannac M, Leoni E, Chiaramonti N (2011) Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters. Int J Wildland Fire 20:152–161CrossRefGoogle Scholar
  4. Bowman DMJS, French BJ, Prior LD (2014) Have plants evolved to self-immolate? Front Plant Sci 5:590.  https://doi.org/10.3389/fpls.2014.00590CrossRefPubMedPubMedCentralGoogle Scholar
  5. Broido A, Nelson MA (1964) Ash content: its effect on combustion of corn plants. Science 146:652–653CrossRefGoogle Scholar
  6. Cescatti A, Niinemets Ü (2004) Leaf to landscape. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation: chloroplast to landscape. Springer, New YorkGoogle Scholar
  7. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New YorkCrossRefGoogle Scholar
  8. Chetehouna K, Courty L, Mounaïm-Rousselle C, Halter F, Garo J-P (2013) Combustion characteristics of p-cymene possibly involved in accelerating forest fires. Combust Sci Technol 185(9):1295–1305.  https://doi.org/10.1080/00102202.2013.795557CrossRefGoogle Scholar
  9. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491(7426):752–755.  https://doi.org/10.1038/nature11688CrossRefPubMedGoogle Scholar
  10. De Lillis M, Bianco PM, Loreto F (2009) The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species. Int J Wildland Fire 18:203–212CrossRefGoogle Scholar
  11. Della Rocca G, Madrigal J, Marchi E, Michelozzi M, Moya B, Danti R (2017) Relevance of terpenoids on flammability of Mediterranean species: an experimental approach at a low radiant heat flux. iForest Biogeosci For 10(5):766–775.  https://doi.org/10.3832/ifor2327-010CrossRefGoogle Scholar
  12. Ellis PFM (2011) Fuelbed ignition potential and bark morphology explain the notoriety of the eucalypt messmate ‘stringybark’ for intense spotting. Int J Wildland Fire 20:897–907.  https://doi.org/10.1071/WF10052CrossRefGoogle Scholar
  13. Falster DS, Duursma RA, Ishihara MI, Barneche DR, FitzJohn RG, Vårhammar A, Aiba M, Ando M, Anten N, Aspinwall MJ, Baltzer JL, Baraloto C, Battaglia M, Battles JJ, Bond-Lamberty B, van Breugel M, Camac J, Claveau Y, Coll L, Dannoura M, Delagrange S, Domec J-C, Fatemi F, Feng W, Gargaglione V, Goto Y, Hagihara A, Hall JS, Hamilton S, Harja D, Hiura T, Holdaway R, Hutley LS, Ichie T, Jokela EJ, Kantola A, Kelly JWG, Kenzo T, King D, Kloeppel BD, Kohyama T, Komiyama A, Laclau J-P, Lusk CH, Maguire DA, le Maire G, Mäkelä A, Markesteijn L, Marshall J, McCulloh K, Miyata I, Mokany K, Mori S, Myster RW, Nagano M, Naidu SL, Nouvellon Y, O’Grady AP, O’Hara KL, Ohtsuka T, Osada N, Osunkoya OO, Peri PL, Petritan AM, Poorter L, Portsmuth A, Potvin C, Ransijn J, Reid D, Ribeiro SC, Roberts SD, Rodríguez R, Saldaña-Acosta A, Santa-Regina I, Sasa K, Selaya NG, Sillett SC, Sterck F, Takagi K, Tange T, Tanouchi H, Tissue D, Umehara T, Utsugi H, Vadeboncoeur MA, Valladares F, Vanninen P, Wang JR, Wenk E, Williams R, de Aquino Ximenes F, Yamaba A, Yamada T, Yamakura T, Yanai RD, York RA (2015) BAAD: a biomass and allometry database for woody plants. Ecology 96(5):1445–1445.  https://doi.org/10.1890/14-1889.1CrossRefGoogle Scholar
  14. Fernández-Álvarez M, Armesto J, Picos J (2019) LiDAR-based wildfire prevention in WUI: the automatic detection, measurement and evaluation of Forest fuels. Forests 10(2):148CrossRefGoogle Scholar
  15. Finney MA, Cohen JD, McAllister SS, Jolly WM (2013) On the need for a theory of wildland fire spread. Int J Wildland Fire 22(1):25–36.  https://doi.org/10.1071/wf11117CrossRefGoogle Scholar
  16. Ganteaume A, Guijarro M, Jappiot M, Hernando C, Lampin-Maillet C, Pérez-Gorostiaga P, Vega JA (2011) Laboratory characterization of firebrands involved in spot fires. Ann For Sci 68(3):531–541.  https://doi.org/10.1007/s13595-011-0056-4CrossRefGoogle Scholar
  17. Giménez A, Pastor E, Zárate L, El P, Arnaldos J (2004) Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. Int J Wildland Fire 13(1):15CrossRefGoogle Scholar
  18. Grootemaat S, Wright IJ, van Bodegom PM, Cornelissen JHC, Cornwell WK, Schweitzer J (2015) Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct Ecol 29(11):1486–1497.  https://doi.org/10.1111/1365-2435.12449CrossRefGoogle Scholar
  19. Hart SJ, Schoennagel T, Veblen TT, Chapman TB (2015) Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc Natl Acad Sci USA 112:4375–4380.  https://doi.org/10.1073/pnas.1424037112CrossRefPubMedGoogle Scholar
  20. Harvey BJ, Donato DC, Turner MG (2014) Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US northern rockies. Proc Natl Acad Sci 111(42):15120–15125.  https://doi.org/10.1073/pnas.1411346111CrossRefPubMedGoogle Scholar
  21. Henriksson J (2001) Differential shading of branches or whole trees: survival, growth, and reproduction. Oecologia 126(4):482–486.  https://doi.org/10.1007/s004420000547CrossRefPubMedGoogle Scholar
  22. Jucker T, Bouriaud O, Coomes DA, Baltzer J (2015) Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29(8):1078–1086.  https://doi.org/10.1111/1365-2435.12428CrossRefGoogle Scholar
  23. Keane RE (2015) Wildland fuel fundamentals and applications. Springer, ChamCrossRefGoogle Scholar
  24. Keane RE, Reinhardt ED, Scott J, Gray K, Reardon J (2005) Estimating forest canopy bulk density using six indirect methods. Can J For Res 35:724–739.  https://doi.org/10.1139/x04-213CrossRefGoogle Scholar
  25. Keane RE, Gray K, Vacciu V (2012) Spatial variability of wildland fuel characteristics in Northern Rocky Mountain ecosystems. Res Pap RMRS-RP-98. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO, 56 pGoogle Scholar
  26. Kesselmeier J, Ciccioli P, Kuhn U, Stefani P, Biesenthal T, Rottenberger S, Wolf A, Vitullo M, Valentini R, Nobre A, Kabat P, Andreae MO (2002) Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob Biogeochem Cycles 16(4):73-71–73-79.  https://doi.org/10.1029/2001gb001813
  27. Koike T (1990) Autumn coloring, photosynthetic performance and leaf development of deciduous broadleaved trees in relation to forest succession. Tree Physiol 7:21–32CrossRefGoogle Scholar
  28. Kolb KJ, Sperry JS (1999) Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80(7):2373–2384CrossRefGoogle Scholar
  29. Kunz M, Fichtner A, Hardtle W, Raumonen P, Bruelheide H, von Oheimb G (2019) Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol Lett.  https://doi.org/10.1111/ele.13400
  30. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the earth system. New Phytol 183(1):27–51.  https://doi.org/10.1111/j.1469-8137.2009.02859.xCrossRefPubMedGoogle Scholar
  31. Lawton RO (1984) Ecological constraints on wood density in a tropical montane rain forest. Am J Bot 71(2):261–267.  https://doi.org/10.1002/j.1537-2197.1984.tb12512.xCrossRefGoogle Scholar
  32. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136.  https://doi.org/10.1146/annurev.arplant.57.032905.105316CrossRefPubMedPubMedCentralGoogle Scholar
  33. Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A, Reich PB, Santiago LS (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Glob Ecol Biogeogr 24(6):706–717.  https://doi.org/10.1111/geb.12296CrossRefGoogle Scholar
  34. Niinemets Ü, Anten NPR (2009) Packing the photosynthetic machinery: from leaf to canopy. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico understanding complexity from molecules to ecosystems, Advances in Photosynthesis and Respiration. Springer, Dordrecht, pp 364–399Google Scholar
  35. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547.  https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2CrossRefGoogle Scholar
  36. Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric Meteorol 8:25–38CrossRefGoogle Scholar
  37. Ordóñez JL (2019) Cómo diferenciar los pinos autóctonos peninsulares. In Justamante A (ed) Claves para identificar las diferentes especies de pinos, ¡infografía disponible [Blog post]. 27th May 2019. Retrieved from http://blog.creaf.cat/es/noticias/claves-para-identificar-las-diferentes-especies-de-pinos-infografia-disponible/
  38. Ormeño E, Céspedes B, Sánchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manag 257(2):471–482.  https://doi.org/10.1016/j.foreco.2008.09.019CrossRefGoogle Scholar
  39. Owens MK, Lin C-D, Taylor CA, Whisenant SG (1998) Seasonal patterns of plant flammability and monoterpenoid content in Juniperus ashei. J Chem Ecol 24(12):2115–2129.  https://doi.org/10.1023/A:1020793811615CrossRefGoogle Scholar
  40. Petisco C, García-Criado B, Vázquez de Aldana BR, García-Ciudad A, Mediavilla S (2008) Ash and mineral contents in leaves of woody species: analysis by near-infrared reflectance spectroscopy. Comm Soil Sci Plant Anal 39(5–6):905–925.  https://doi.org/10.1080/00103620701881253CrossRefGoogle Scholar
  41. Poorter H, Niinemets Ü, Lourens P, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182(3):565–588CrossRefGoogle Scholar
  42. Raunkiaer C (1934) The life forms of plants and statistical plant geography (H. Gilbert-Carter & A. Fausbøll, trans. English ed.). Oxford University Press, OxfordGoogle Scholar
  43. Reinhardt E, Scott J, Gray K, Keane R (2006) Estimating canopy fuel characteristics in five conifer stands in the western United States using tree and stand measurements. Can J For Res 36(11):2803–2814.  https://doi.org/10.1139/x06-157CrossRefGoogle Scholar
  44. Resco de Dios V, Chowdhury FI, Granda E, Yao Y, Tissue DT (2019) Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants. New Phytol 223:1696–1706CrossRefGoogle Scholar
  45. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research paper INT-115. Ogden, UTGoogle Scholar
  46. Schwilk DW, Caprio AC (2011) Scaling from leaf traits to fire behaviour: community composition predicts fire severity in a temperate forest. J Ecol 99(4):970–980.  https://doi.org/10.1111/j.1365-2745.2011.01828.xCrossRefGoogle Scholar
  47. Smith SD, Monson RK, Anderson JE (1997) Drought-deciduous shrubs. In: Physiological ecology of North American Desert plants, Adaptations of desert organisms. Springer, Berlin/Heidelberg, pp 109–123CrossRefGoogle Scholar
  48. Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of Lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64(3):192–201.  https://doi.org/10.1093/biosci/bit037CrossRefGoogle Scholar
  49. Stephens SL, Collins BM, Fettig CJ, Finney MA, Hoffman CM, Knapp EE, North MP, Safford H, Wayman RB (2018) Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68(2):77–88.  https://doi.org/10.1093/biosci/bix146CrossRefGoogle Scholar
  50. Thomas PB, Watson PJ, Bradstock RA, Penman TD, Price OF (2014) Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of South-Eastern Australia. Ecography 37(9):827–837.  https://doi.org/10.1111/ecog.00445CrossRefGoogle Scholar
  51. Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiol 88(3):574–580CrossRefGoogle Scholar
  52. Van Wagner CE (1977) Conditions for the start and spread of a crown fire. Can J For Res 7:23–34CrossRefGoogle Scholar
  53. Varner JM, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 1(2):91–99.  https://doi.org/10.1007/s40725-015-0012-xCrossRefGoogle Scholar
  54. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54(390):2015–2024.  https://doi.org/10.1093/jxb/erg221CrossRefPubMedGoogle Scholar
  55. Vilagrosa A, Hernandez EI, Luis VC, Cochard H, Pausas JG (2014) Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol 201(4):1277–1288.  https://doi.org/10.1111/nph.12584CrossRefPubMedGoogle Scholar
  56. Westoby M (1984) The self-thinning rule. In: MacFadyen A, Ford ED (eds) Advances in ecological research, vol 14. Academic Press, pp 167–225.  https://doi.org/10.1016/S0065-2504(08)60171-3
  57. Zaja G, Szyszlak-Bargłowicz J, Gołebiowski W, Szczepanik M (2018) Chemical characteristics of biomass ashes. Energies 11:2885CrossRefGoogle Scholar
  58. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Global wood density database. Dryad. Identifier: http://hdl.handle.net/10255/dryad.235.
  59. Zhao W, Logtestijn RSP, Hal JR, Dong M, Cornelissen JHC (2019) Non-additive effects of leaf and twig mixtures from different tree species on experimental litter-bed flammability. Plant Soil 436:311–324.  https://doi.org/10.1007/s11104-019-03931-3)containsCrossRefGoogle Scholar
  60. Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56:2286–2295CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Víctor Resco de Dios
    • 1
    • 2
  1. 1.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Crop and Forest Sciences and JRU CTFC-AGROTECNIOUniversitat de LleidaLleidaSpain

Personalised recommendations