Advertisement

Global Change, Pyrophysiology, and Wildfires

  • Víctor Resco de Dios
Chapter
  • 39 Downloads
Part of the Managing Forest Ecosystems book series (MAFE, volume 36)

Abstract

We can expect many changes in the activity of wildfires as a result of global change. Most research has focused on climatic effects, but additional factors such as changes in land cover and land use and including plant biological invasions also play major roles. Furthermore, wildfires exert a large influence to affect global biodiversity, and, depending on management, the effects may be either positive or negative. Here we begin by explaining geographical variations in fire activity as a function of first biogeographical principles and which changes in fire activity we might expect globally. We will then discuss more specifically the issues associated with each of the major biomes globally. Next, we will move to discussing the new challenges for civil protection that fires will bring. We will pay particular attention to issues related to the wildland urban interface and to pyroconvective activity. The chapter ends by discussing the interactions between wildfire activity and invasive species and biodiversity.

References

  1. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:129.  https://doi.org/10.1890/ES15-00203.1CrossRefGoogle Scholar
  2. Archer SR, Andersen EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Briske DD (ed) Rangeland systems: processes, management and challenges. Springer, Cham, pp 25–84.  https://doi.org/10.1007/978-3-319-46709-2_2CrossRefGoogle Scholar
  3. Barlow J, Berenguer E, Carmenta R, França F (2019) Clarifying Amazonia’s burning crisis. Global Change Biology in press (n/a).  https://doi.org/10.1111/gcb.14872
  4. Batllori E, Parisien M-A, Krawchuk MA, Moritz MA (2013) Climate change-induced shifts in fire for Mediterranean ecosystems. Glob Ecol Biogeogr 22(10):1118–1129.  https://doi.org/10.1111/geb.12065CrossRefGoogle Scholar
  5. Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, Moyes F, Magurran A, McGill B, Myers-Smith IH, Winter M, Bjorkman AD, Bowler DE, Byrnes JEK, Gonzalez A, Hines J, Isbell F, Jones HP, Navarro LM, Thompson PL, Vellend M, Waldock C, Dornelas M (2019) The geography of biodiversity change in marine and terrestrial assemblages. Science 366(6463):339–345.  https://doi.org/10.1126/science.aaw1620CrossRefPubMedGoogle Scholar
  6. Boer MM, Bowman DMJS, Murphy BP, Cary GJ, Cochrane MA, Fensham RJ, Krawchuk MA, Price OF, Resco De Dios V, Williams RJ, Bradstock RA (2016) Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environ Res Lett 11:065002CrossRefGoogle Scholar
  7. Boer MM, Resco De Dios V, Stefaniak EZ, Bradstock RA (2019) A hydroclimatic model for the distribution of fire on Earth. Biogeosci Discuss 2019:1–21.  https://doi.org/10.5194/bg-2019-441CrossRefGoogle Scholar
  8. Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Chang Biol 6(8):865–869CrossRefGoogle Scholar
  9. Bond WJ, Midgley GF (2012) Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos Trans R Soc Lond Ser B Biol Sci 367(1588):601–612.  https://doi.org/10.1098/rstb.2011.0182CrossRefGoogle Scholar
  10. Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr 19:145–158.  https://doi.org/10.1111/j.1466-8238.2009.00512.xCrossRefGoogle Scholar
  11. Brooks ML, D’Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54(7):677–688CrossRefGoogle Scholar
  12. Cardil A, Molina DM, Oliveres J, Castellnou M (2016) Fire effects in Pinus uncinata Ram plantations. For Syst 25(1):eSC06.  https://doi.org/10.5424/fs/2016251-08919
  13. Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci 108:1474–1478.  https://doi.org/10.1073/pnas.1010070108CrossRefPubMedGoogle Scholar
  14. Castellnou M, Guiomar N, Rego F, Fernandes PM (2018) Fire growth patterns in the 2017 mega fire episode of October 15, central Portugal. In: Viegas DX (ed) Advances in forest fire research 2018. Imprensa da Universidade de Coimbra, Coimbra, pp 447–453.  https://doi.org/10.14195/978-989-26-16-506_48
  15. Charles-Dominique T, Midgley GF, Bond WJ, Scheiner S (2017) Fire frequency filters species by bark traits in a savanna-forest mosaic. J Veg Sci 28(4):728–735.  https://doi.org/10.1111/jvs.12528CrossRefGoogle Scholar
  16. Cochrane MA, Schulze MD (1998) Forest fires in the Brazilian Amazon. Conserv Biol 12(5):948–950CrossRefGoogle Scholar
  17. Cochrane MA, Alencar A, Schulze MD, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284(5421):1832–1835.  https://doi.org/10.1126/science.284.5421.1832CrossRefPubMedGoogle Scholar
  18. Collins L, Boer MM, de Dios VR, Power SA, Bendall ER, Hasegawa S, Hueso RO, Nevado JP, Bradstock RA (2018) Effects of competition and herbivory over woody seedling growth in a temperate woodland trump the effects of elevated CO2. Oecologia 187(3):811–823.  https://doi.org/10.1007/s00442-018-4143-1CrossRefPubMedGoogle Scholar
  19. Cramer W, Guiot J, Fader M, Garrabou J, Gattuso J-P, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peñuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang.  https://doi.org/10.1038/s41558-018-0299-2
  20. Curran TJ, Perry GLW, Wyse SV, Alam MA (2018) Managing fire and biodiversity in the Wildland-Urban interface: a role for green firebreaks. Fire 1:3CrossRefGoogle Scholar
  21. Curt T, Mouillot F, Pellizzaro G (2013) Topic 13: measuring and modeling fuel change in relation to drought. In: Moreno JM (ed) Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world. Lessons learned and outlook, pp 30–31Google Scholar
  22. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23(1):63–87.  https://doi.org/10.1146/annurev.es.23.110192.000431CrossRefGoogle Scholar
  23. Davis KT, Dobrowski SZ, Higuera PE, Holden ZA, Veblen TT, Rother MT, Parks SA, Sala A, Maneta MP (2019) Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc Natl Acad Sci U S A 116:6193–6198.  https://doi.org/10.1073/pnas.18151071165061/dryad.pc3f9d8CrossRefPubMedPubMedCentralGoogle Scholar
  24. FAO (2011) The state of forests in the Amazon Basin. Congo Basin and Southeast Asia, RomeGoogle Scholar
  25. Fernández C, Fernández-Alonso JM, Vega JA (2019) Effects of mastication of burned non-commercial Pinus pinaster Ait. trees on soil compaction and vegetation response. For Ecol Manag 449:117457.  https://doi.org/10.1016/j.foreco.2019.117457CrossRefGoogle Scholar
  26. Flannigan M, Stocks B, Turetsky M, Wotton M (2009) Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Chang Biol 15(3):549–560.  https://doi.org/10.1111/j.1365-2486.2008.01660.xCrossRefGoogle Scholar
  27. Fromm M, Lindsey DT, Servranckx R, Yue G, Trickl T, Sica R, Doucet P, Godin-Beekmann S (2010) The untold story of Pyrocumulonimbus. Bull Am Meteorol Soc 91(9):1193–1210.  https://doi.org/10.1175/2010bams3004.1CrossRefGoogle Scholar
  28. Gaertner M, Biggs R, Te Beest M, Hui C, Molofsky J, Richardson DM, Kühn I (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Divers Distrib 20(7):733–744.  https://doi.org/10.1111/ddi.12182CrossRefGoogle Scholar
  29. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349(6250):819–822.  https://doi.org/10.1126/science.aaa9092CrossRefPubMedGoogle Scholar
  30. Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeo 118:317–328.  https://doi.org/10.1002/jgrg.20042CrossRefGoogle Scholar
  31. Gimeno TE, McVicar TR, O’Grady AP, Tissue DT, Ellsworth DS (2018) Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob Chang Biol 24(7):3010–3024.  https://doi.org/10.1111/gcb.14139CrossRefPubMedGoogle Scholar
  32. Gómez-González S, Ojeda F, Fernandes PM (2018) Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ Sci Pol 81:104–107.  https://doi.org/10.1016/j.envsci.2017.11.006CrossRefGoogle Scholar
  33. Grace J (1998) Can prescribed fire save the endangered coastal prairie ecosystem from Chinese tallow invasion. Endangered Species Update, vol 15Google Scholar
  34. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347CrossRefGoogle Scholar
  35. Grossiord C (2018) Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytol.  https://doi.org/10.1111/nph.15667
  36. He T, Lamont BB, Pausas JG (2019) Fire as a key driver of Earth’s biodiversity. Biol Rev Camb Philos Soc 94:1983–2010.  https://doi.org/10.1111/brv.12544CrossRefPubMedGoogle Scholar
  37. Hódar JA, Castro J, Zamora R (2003) Pine processionary caterpillar Thaumetopoea pityocampa as a new threat for relict Mediterranean Scots pine forests under climatic warming. Biol Conserv 110(1):123–129CrossRefGoogle Scholar
  38. IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, GermanyGoogle Scholar
  39. Karavani A, Boer MM, Baudena M, Colinas C, Díaz-Sierra R, Pemán J, de Luís M, Enríquez-de-Salamanca Á, Resco de Dios V (2018) Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecol Monogr 88:141–169CrossRefGoogle Scholar
  40. Keeley JE (2006) Fire management impacts on invasive plants in the Western United States. Conserv Biol 20(2):375–384.  https://doi.org/10.1111/j.1523-1739.2006.00339.xCrossRefPubMedGoogle Scholar
  41. Keeley JE, Syphard AD (2019) Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol 15(1).  https://doi.org/10.1186/s42408-019-0041-0
  42. Kelley DI, Bistinas I, Whitley R, Burton C, Marthews TR, Dong N (2019) How contemporary bioclimatic and human controls change global fire regimes. Nat Clim Chang 9(9):690–696.  https://doi.org/10.1038/s41558-019-0540-7CrossRefGoogle Scholar
  43. Kelly LT, Brotons L (2017) Using fire to promote biodiversity. Science 355(6331):1264–1265.  https://doi.org/10.1126/science.aam7672CrossRefPubMedGoogle Scholar
  44. Knorr W, Arneth A, Jiang L (2016) Demographic controls of future global fire risk. Nat Clim Chang 6(8):781–785CrossRefGoogle Scholar
  45. Krawchuk MA, Moritz MA (2011) Constraints on global fire activity vary across a resource gradient. Ecology 92(1):121–132.  https://doi.org/10.1890/09-1843.1CrossRefPubMedGoogle Scholar
  46. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793.  https://doi.org/10.1073/pnas.0705414105CrossRefPubMedGoogle Scholar
  47. Macias Fauria M, Michaletz ST, Johnson EA (2011) Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdiscip Rev Clim Chang 2(1):99–112.  https://doi.org/10.1002/wcc.92CrossRefGoogle Scholar
  48. McClaran MP, Ffoillot PF, Edminster CB (2003) Santa Rita experimental range:100 Years (1903 to 2003) of accomplishments and contributions. Conference proceedings, October 30–November 1, 2003. Tucson, AZGoogle Scholar
  49. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826.  https://doi.org/10.1126/science.aaa9933CrossRefPubMedGoogle Scholar
  50. Moreira F, Ascoli D, Safford H, Adams M, Moreno JM, Pereira JC, Catry F, Armesto J, Bond WJ, Gonzalez M, Curt T, Koutsias N, McCaw L, Price O, Pausas J, Rigolot E, Stephens S, Tavsanoglu C, Vallejo R, Van Wilgen B, Xanthopoulos G, Fernandes P (2019) Wildfire management in Mediterranean-type regions: paradigm change needed. Environ Res Lett doi: https://doi.org/10.1088/1748-9326/ab541e
  51. Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci 104(37):14724–14729CrossRefGoogle Scholar
  52. Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3(6):art49.  https://doi.org/10.1890/es11-00345.1CrossRefGoogle Scholar
  53. Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc Natl Acad Sci 113(39):10759–10768.  https://doi.org/10.1073/pnas.1605516113CrossRefPubMedGoogle Scholar
  54. Pastor E, Munoz-Navarro JA, Caballero D, Àgueda A, Dalmau-Rovira F, Planas E (2019) Wildland–Urban interface fires in Spain: summary of the policy framework and recommendations for improvement. Fire Technol.  https://doi.org/10.1007/s10694-019-00883-z
  55. Peñuelas J, Sardans J, Filella I, Estiarte M, Llusià J, Ogaya R, Carnicer J, Bartrons M, Rivas-Ubach A, Grau O, Peguero G, Margalef O, Pla-Rabés S, Stefanescu C, Asensio D, Preece C, Liu L, Verger A, Rico L, Barbeta A, Achotegui-Castells A, Gargallo-Garriga A, Sperlich D, Farré-Armengol G, Fernández-Martínez M, Liu D, Zhang C, Urbina I, Camino M, Vives M, Nadal-Sala D, Sabaté S, Gracia C, Terradas J (2017) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ Exp Bot.  https://doi.org/10.1016/j.envexpbot.2017.05.012
  56. Peterson DA, Hyer EJ, Campbell JR, Solbrig JE, Fromm MD (2017) A conceptual model for development of intense pyrocumulonimbus in Western North America. Mon Weather Rev 145(6):2235–2255.  https://doi.org/10.1175/mwr-d-16-0232.1CrossRefGoogle Scholar
  57. Price O, Bradstock R (2014) Countervailing effects of urbanization and vegetation extent on fire frequency on the Wildland Urban Interface: disentangling fuel and ignition effects. Landsc Urban Plan 130:81–88.  https://doi.org/10.1016/j.landurbplan.2014.06.013CrossRefGoogle Scholar
  58. Price O, Borah R, Bradstock R, Penman T (2015) An empirical wildfire risk analysis: the probability of a fire spreading to the urban interface in Sydney, Australia. Int J Wildland Fire 24(5):597.  https://doi.org/10.1071/wf14160CrossRefGoogle Scholar
  59. Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob Chang Biol 18(5):1725–1737.  https://doi.org/10.1111/j.1365-2486.2011.02636.xCrossRefPubMedCentralGoogle Scholar
  60. Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Sn M, Syphard AD, Stewart SI (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Natl Acad Sci U S A 115:3314–3319CrossRefGoogle Scholar
  61. Resco de Dios V, Weltzin JF, Sun W, Huxman TE, Williams DG (2012) Windows of opportunity for Prosopis velutina seedling establishment and encroachment in a semiarid grassland. Perspect Plant Ecol Evol Syst 14(4):275–282CrossRefGoogle Scholar
  62. Resco de Dios V, Weltzin JF, Sun W, Huxman TE, Williams DG (2014) Transitions from grassland to savanna under drought through passive facilitation by grasses. J Veg Sci 25:937–946CrossRefGoogle Scholar
  63. Rogers BM, Soja AJ, Goulden ML, Randerson JT (2015) Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat Geosci 8:228–234CrossRefGoogle Scholar
  64. Rosell JA (2016) Bark thickness across the angiosperms: more than just fire. New Phytol 211(1):90–102.  https://doi.org/10.1111/nph.13889CrossRefPubMedGoogle Scholar
  65. Schmitz DC, Simberloff D, Hofstetter RH, Haller W, Sutton D (1997) The ecological impact of nonindigenous plants. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise. Island Press, Washington, DC, pp 39–61Google Scholar
  66. Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence in rocky mountain subalpine forests. Ecol Appl 15(6):2000–2014.  https://doi.org/10.1890/04-1579CrossRefGoogle Scholar
  67. Shvidenko AZ, Schepaschenko DG (2013) Climate change and wildfires in Russia. Contemp Probl Ecol 6(7):683–692.  https://doi.org/10.1134/S199542551307010XCrossRefGoogle Scholar
  68. Sommerfeld A, Senf C, Buma B, D’Amato AW, Despres T, Diaz-Hormazabal I, Fraver S, Frelich LE, Gutierrez AG, Hart SJ, Harvey BJ, He HS, Hlasny T, Holz A, Kitzberger T, Kulakowski D, Lindenmayer D, Mori AS, Muller J, Paritsis J, Perry GLW, Stephens SL, Svoboda M, Turner MG, Veblen TT, Seidl R (2018) Patterns and drivers of recent disturbances across the temperate forest biome. Nat Commun 9(1):4355.  https://doi.org/10.1038/s41467-018-06788-9CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stephens SL, Collins BM, Fettig CJ, Finney MA, Hoffman CM, Knapp EE, North MP, Safford H, Wayman RB (2018) Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68(2):77–88.  https://doi.org/10.1093/biosci/bix146CrossRefGoogle Scholar
  70. Stevens JT, Beckage B (2009) Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius). New Phytol 184(2):365–375.  https://doi.org/10.1111/j.1469-8137.2009.02965.xCrossRefPubMedGoogle Scholar
  71. Stevens N, Lehmann CE, Murphy BP, Durigan G (2016) Savanna woody encroachment is widespread across three continents. Glob Chang Biol.  https://doi.org/10.1111/gcb.13409
  72. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402.  https://doi.org/10.1890/06-1128.1CrossRefPubMedGoogle Scholar
  73. Syphard AD, Brennan TJ, Keeley JE (2014) The role of defensible space for residential structure protection during wildfires. Int J Wildland Fire 23(8):1165.  https://doi.org/10.1071/wf13158CrossRefGoogle Scholar
  74. Syphard AD, Brennan TJ, Keeley JE (2017) The importance of building construction materials relative to other factors affecting structure survival during wildfire. Int J Disaster Risk Reduct 21:140–147.  https://doi.org/10.1016/j.ijdrr.2016.11.011CrossRefGoogle Scholar
  75. Tautenhahn S, Lichstein JW, Jung M, Kattge J, Bohlman SA, Heilmeier H, Prokushkin A, Kahl A, Wirth C (2016) Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes. Glob Chang Biol 22(6):2178–2197.  https://doi.org/10.1111/gcb.13181CrossRefPubMedGoogle Scholar
  76. te Beest M, Cromsigt JPGM, Ngobese J, Olff H (2011) Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biol Invasions 14(3):607–618.  https://doi.org/10.1007/s10530-011-0102-zCrossRefGoogle Scholar
  77. Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8(1):11–14.  https://doi.org/10.1038/ngeo2325. http://www.nature.com/ngeo/journal/v8/n1/abs/ngeo2325.html. supplementary-information
  78. Van Auken OW (2009) Causes and consequences of woody plant encroachment into western North American grasslands. J Environ Manag 90(10):2931–2942.  https://doi.org/10.1016/j.jenvman.2009.04.023CrossRefGoogle Scholar
  79. van Wilgen BW, Richardson DM (1985) The effects of Alien Shrub invasions on vegetation structure and fire behaviour in South African Fynbos Shrublands: a simulation study. J Appl Ecol 22(3):955.  https://doi.org/10.2307/2403243CrossRefGoogle Scholar
  80. Venter ZS, Cramer MD, Hawkins HJ (2018) Drivers of woody plant encroachment over Africa. Nat Commun 9(1):2272.  https://doi.org/10.1038/s41467-018-04616-8CrossRefPubMedPubMedCentralGoogle Scholar
  81. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313(5789):940–943CrossRefGoogle Scholar
  82. Ying L, Han J, Du Y, Shen Z (2018) Forest fire characteristics in China: spatial patterns and determinants with thresholds. For Ecol Manag 424:345–354.  https://doi.org/10.1016/j.foreco.2018.05.020CrossRefGoogle Scholar
  83. Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509(7498):86–90.  https://doi.org/10.1038/nature13265CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Víctor Resco de Dios
    • 1
    • 2
  1. 1.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Crop and Forest Sciences and JRU CTFC-AGROTECNIOUniversitat de LleidaLleidaSpain

Personalised recommendations