Advertisement

Introduction

  • Víctor Resco de Dios
Chapter
  • 40 Downloads
Part of the Managing Forest Ecosystems book series (MAFE, volume 36)

Abstract

The physiological ecology of plant-fire relations, or pyrophysiology, seeks to provide a mechanistic and predictive understanding of the reciprocal interactions that exist between plants and fire. That is, by understanding the processes underlying plant structure and function, we may gain further insight on how wildfires affect plants as well as on how the physiological traits that affect wildfires develop. This chapter presents a general introduction to the topics of pyrophysiology and to wildfire science, and it ends by presenting the book structure.

References

  1. Alcasena FJ, Ager AA, Salis M, Day MA, Vega-Garcia C (2017) Optimizing prescribed fire allocation for managing fire risk in Central Catalonia. Sci Total Environ 621:872–885.  https://doi.org/10.1016/j.scitotenv.2017.11.297CrossRefPubMedGoogle Scholar
  2. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT (2017) A human-driven decline in global burned area. Science 356(6345):1356–1362.  https://doi.org/10.1126/science.aal4108CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bar A, Michaletz ST, Mayr S (2019) Fire effects on tree physiology. New Phytol.  https://doi.org/10.1111/nph.15871
  4. Belcher CM, Yearsley JM, Hadden RM, McElwain JC, Rein G (2010) Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc Natl Acad Sci 107(52):22448–22453.  https://doi.org/10.1073/pnas.1011974107CrossRefPubMedGoogle Scholar
  5. Boer MM, Nolan RH, Resco De Dios V, Clarke H, Price OF, Bradstock RA (2017) Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Future 5:1196–1202.  https://doi.org/10.1002/2017EF000657CrossRefGoogle Scholar
  6. Boer MM, Resco De Dios V, Stefaniak EZ, Bradstock RA (2019) A hydroclimatic model for the distribution of fire on Earth. Biogeosci Discuss 2019:1–21.  https://doi.org/10.5194/bg-2019-441CrossRefGoogle Scholar
  7. Bond WJ, Keeley JE (2005) Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394.  https://doi.org/10.1016/j.tree.2005.04.025CrossRefPubMedGoogle Scholar
  8. Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165(2):525–538CrossRefGoogle Scholar
  9. Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450(7166):89.  https://doi.org/10.1038/nature06272CrossRefPubMedGoogle Scholar
  10. Bowman DMJS, Murphy BP (2010) Fire and biodiversity. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 163–180CrossRefGoogle Scholar
  11. Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Glob Ecol Biogeogr 19:145–158.  https://doi.org/10.1111/j.1466-8238.2009.00512.xCrossRefGoogle Scholar
  12. Chuvieco E, Yue C, Heil A, Mouillot F, Alonso-Canas I, Padilla M, Pereira JM, Oom D, Tansey K (2016) A new global burned area product for climate assessment of fire impacts. Glob Ecol Biogeogr 25(5):619–629.  https://doi.org/10.1111/geb.12440CrossRefGoogle Scholar
  13. Costafreda-Aumedes S, Comas C, Vega-Garcia C (2017) Human-caused fire occurrence modelling in perspective: a review. Int J Wildland Fire 26(12):983.  https://doi.org/10.1071/wf17026CrossRefGoogle Scholar
  14. Dannenmann M, Díaz-Pinés E, Kitzler B, Karhu K, Tejedor J, Ambus P, Parra A, Sánchez L, Resco V, Ramírez D, Povoas-Guimaraes L, Zechmeister-Boltenstern S, Kraus D, Castaldi S, Vallejo A, Rubio A, Moreno J, Butterbach-Bahl K (2018) Post-fire nitrogen balance of Mediterranean Shrublands: direct combustion losses versus gaseous and leaching losses from the post-fire soil mineral nitrogen flush. Glob Chan Biol 24:4505–4520CrossRefGoogle Scholar
  15. Dickinson MB, Johnson EA (2001) Fire effects on trees. Forest fires: behavior and ecological effects. Academic Press, San Diego, CA.  https://doi.org/10.1016/B978-012386660-8/50016-7CrossRefGoogle Scholar
  16. Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeo 118:317–328.  https://doi.org/10.1002/jgrg.20042CrossRefGoogle Scholar
  17. Glasspool IJ, Edwards D, Axe L (2006) Charcoal in the early Devonian: a wildfire-derived Konservat–Lagerstätte. Rev Palaeobot Palynol 142(3):131–136.  https://doi.org/10.1016/j.revpalbo.2006.03.021CrossRefGoogle Scholar
  18. Hood SM, Varner JM, van Mantgem P, Cansler CA (2018) Fire and tree death: understanding and improving modeling of fire-induced tree mortality. Environ Res Lett 13(11):113004.  https://doi.org/10.1088/1748-9326/aae934CrossRefGoogle Scholar
  19. Jolly W, Johnson D (2018) Pyro-ecophysiology: shifting the paradigm of live Wildland fuel research. Fire 1(1):8.  https://doi.org/10.3390/fire1010008CrossRefGoogle Scholar
  20. Karavani A, Boer MM, Baudena M, Colinas C, Díaz-Sierra R, Pemán J, de Luís M, Enríquez-de-Salamanca Á, Resco de Dios V (2018) Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities. Ecol Monogr 88:141–169CrossRefGoogle Scholar
  21. Kavanagh KL, Dickinson MB, Bova AS (2010) A way forward for fire-caused tree mortality prediction: Modeling a physiological consequence of fire. Fire Ecol 6:80–94CrossRefGoogle Scholar
  22. Keane RE (2015) Wildland fuel fundamentals and applications. Springer, ChamCrossRefGoogle Scholar
  23. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems- ecology, evolution and management. Cambridge University Press, CambridgeGoogle Scholar
  24. Kelly LT, Brotons L (2017) Using fire to promote biodiversity. Science 355(6331):1264–1265.  https://doi.org/10.1126/science.aam7672CrossRefPubMedGoogle Scholar
  25. Knapp AK (1985) Effect of fire and drought on the ecophysiology of Andropogon gerardii and Panicum virgatum in a tallgrass prairie. Ecology 66(4):1309–1320.  https://doi.org/10.2307/1939184CrossRefGoogle Scholar
  26. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S-i, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global Carbon Budget 2016. Earth System Science Data 8(2):605–649.  https://doi.org/10.5194/essd-8-605-2016CrossRefGoogle Scholar
  27. Marlon JR, Bartlein PJ, Gavin DG, Long CJ, Anderson RS, Briles CE, Brown KJ, Colombaroli D, Hallett DJ, Power MJ, Scharf EA, Walsh MK (2012) Long-term perspective on wildfires in the western USA. Proc Natl Acad Sci USA 109(9):E535–E543.  https://doi.org/10.1073/pnas.1112839109CrossRefPubMedGoogle Scholar
  28. Minnich R (1983) Fire mosaics in Southern California and Northern Baja California. Science 219:1287–1294CrossRefGoogle Scholar
  29. Nelson RF (2001) Water relations of forest fuels. In: Johnson EA, Miyanishi K (eds) Forest fires: behavior and ecological effects. Academic Press, New York, pp 79–149CrossRefGoogle Scholar
  30. Niccoli F, Esposito A, Altieri S, Battipaglia G (2019) Fire severity influences ecophysiological responses of Pinus pinaster ait. Front Plant Sci 10:539.  https://doi.org/10.3389/fpls.2019.00539CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nolan RH, Boer MM, Resco de Dios V, Caccamo G, Bradstock RA (2016) Large scale, dynamic transformations in fuel moisture drive wildfire activity across South-Eastern Australia. Geophys Res Lett 43:4229–4238CrossRefGoogle Scholar
  32. Nolan RH, Hedo J, Arteaga C, Sugai T, Resco de Dios V (2018) Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric For Meteorol 263:417–427.  https://doi.org/10.1016/j.agrformet.2018.09.011CrossRefGoogle Scholar
  33. Parra A, Moreno JM (2017) Post-fire environments are favourable for plant functioning of seeder and resprouter Mediterranean shrubs, even under drought. The New Phytologist 214(3):1118–1131.  https://doi.org/10.1111/nph.14454CrossRefPubMedGoogle Scholar
  34. Pate JS, Froend RH, Bowen BJ, Hansen A, Kuo J (1990) Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S.W. Australia. Ann Bot 65:585–601CrossRefGoogle Scholar
  35. Pausas J, Bradstock RA (2007) Plant persistence fire traits along a productivity and disturbance gradient in Mediterranean shrublands of southeastern Australia. Glob Ecol Biogeogr 16:330–340CrossRefGoogle Scholar
  36. Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Glob Ecol Biogeogr 22:728–736CrossRefGoogle Scholar
  37. Pausas JG, Bradstock RA, Keith DA, Keeley JE, G.C.T.E. Fire Network (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100CrossRefGoogle Scholar
  38. Piñol J, Castellnou M, Beven KJ (2007) Conditioning uncertainty in ecological models: assessing the impact of fire management strategies. Ecol Model 207:34–44.  https://doi.org/10.1016/j.ecolmodel.2007.03.020CrossRefGoogle Scholar
  39. Resco de Dios V, Fellows AW, Nolan RH, Boer MM, Bradstock RA, Domingo F, Goulden ML (2015) A semi-mechanistic model for predicting the moisture content of fine litter. Agric For Meteorol 203:64–73CrossRefGoogle Scholar
  40. Schwilk DW (2003) Flammability is a niche construction trait: canopy architecture affects fire intensity. Am Nat 162:725–733CrossRefGoogle Scholar
  41. Staver AC, Archibald S, Levin SA (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053):230–232.  https://doi.org/10.1126/science.1210465CrossRefPubMedGoogle Scholar
  42. Tapias R, Climent J, Pardos JA, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171(1–2):53–68CrossRefGoogle Scholar
  43. Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed-germination in Cistus incanus ssp creticus (L) Heywood and Cistus salvifolius L. Plant Cell Environ 11(9):841–849.  https://doi.org/10.1111/j.1365-3040.1988.tb01910.xCrossRefGoogle Scholar
  44. van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9(2):697–720.  https://doi.org/10.5194/essd-9-697-2017CrossRefGoogle Scholar
  45. West AG, Nel JA, Bond WJ, Midgley JJ (2016) Experimental evidence for heat plume-induced cavitation and xylem deformation as a mechanism of rapid post-fire tree mortality. New Phytol 211(3):828–838.  https://doi.org/10.1111/nph.13979CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecol Divers 9(2):127–140.  https://doi.org/10.1080/17550874.2016.1178353CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Víctor Resco de Dios
    • 1
    • 2
  1. 1.School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Crop and Forest Sciences and JRU CTFC-AGROTECNIOUniversitat de LleidaLleidaSpain

Personalised recommendations