Advertisement

Secure k-Anonymization Linked with Differential Identifiability (Workshop)

  • Zheng ZhaoEmail author
  • Tao Shang
  • Jianwei Liu
Conference paper
  • 110 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 313)

Abstract

Most k-anonymization mechanisms that have been developed presently are vulnerable to re-identification attacks, e.g., those generating a generalized value based on input databases. k-anonymization mechanisms do not properly capture the notion of hiding in a crowd, because they do not impose any constraints on the mechanisms. In this paper, we define \((k,\rho )\)-anonymization that achieves secure k-anonymization notion linked with differential identifiability under the condition of privacy parameter \(\rho \). Both differential identifiability and k-anonymization limit the probability that an individual is re-identified in a database after an adversary observes the output results of the database. Furthermore, differential identifiability can provide the same strong privacy guarantees as differential privacy. It can make k-anonymization perform securely, while \((k,\rho )\)-anonymization achieves the relaxation of the notion of differential identifiability, which can avoid a lot of noise and help obtain better utility for certain tasks. We also prove the properties \((k,\rho )\)-anonymization under composition that can be used for application in data publishing and data mining.

Keywords

Differential identifiability k-anonymization Privacy preservation 

Notes

Acknowledgment

This project was supported by the National Key Research and Development Program of China (No. 2016YFC1000307) and the National Natural Science Foundation of China (No. 61571024, 61971021) for valuable helps.

References

  1. 1.
    Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2005, pp. 128–138. ACM Press, New York (2005)Google Scholar
  2. 2.
    Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2003, pp. 202–210. ACM Press, New York (2003)Google Scholar
  3. 3.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).  https://doi.org/10.1007/11787006_1CrossRefGoogle Scholar
  4. 4.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_14CrossRefGoogle Scholar
  5. 5.
    Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_32CrossRefGoogle Scholar
  6. 6.
    Ganta, S.R., Kasiviswanathan, S.P., Smith, A.: Composition attacks and auxiliary information in data privacy. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 265–273. ACM Press, New York (2008)Google Scholar
  7. 7.
    Gehrke, J., Hay, M., Lui, E., Pass, R.: Crowd-blending privacy. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 479–496. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_28CrossRefGoogle Scholar
  8. 8.
    Gehrke, J., Lui, E., Pass, R.: Towards privacy for social networks: a zero-knowledge based definition of privacy. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 432–449. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_26CrossRefzbMATHGoogle Scholar
  9. 9.
    He, Y., Naughton, J.F.: Anonymization of set-valued data via top-down, local generalization. Proc. VLDB Endow. 2(1), 934–945 (2009)CrossRefGoogle Scholar
  10. 10.
    Kifer, D., Lin, B.R.: Towards an axiomatization of statistical privacy and utility. In: Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, pp. 147–158. ACM Press, New York (2010)Google Scholar
  11. 11.
    Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 193–204. ACM Press, New York (2011)Google Scholar
  12. 12.
    Lee, J., Clifton, C.: Differential identifiability. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, KDD 2012, pp. 1041–1049. ACM Press, New York (2012)Google Scholar
  13. 13.
    Li, N., Li, T., Venkatasubramanian, S.: \(t\)-closeness: privacy beyond \(k\)-anonymity and \(l\)-diversity. In: 22nd International Conference on Data Engineering, ICDE 2007, pp. 106–115. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  14. 14.
    Li, N., Qardaji, W., Su, D.: On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2012, pp. 32–33. ACM Press, New York (2012)Google Scholar
  15. 15.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: \(l\)-diversity: privacy beyond \(k\)-anonymity. In: 22nd International Conference on Data Engineering, ICDE 2006, p. 24. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  16. 16.
    Mendes, R., Vilela, J.P.: Privacy-preserving data mining: methods, metircs, and applications. IEEE Access 5, 10562–10582 (2017)CrossRefGoogle Scholar
  17. 17.
    Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  18. 18.
    Sweeny, L.: Achieving \(k\)-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 571–588 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sweeny, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertain., Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yu, S.: Big privacy: challenges and opportunities of privacy study in the age of big data. IEEE Access 4, 2169–3536 (2016)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  2. 2.School of Cyber Science and TechnologyBeihang UniversityBeijingChina

Personalised recommendations