Secure Communication with a Proactive Eavesdropper Under Perfect CSI and CDI

  • Qun Li
  • Ding XuEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 312)


This paper studies physical layer security of a three node multicarrier network with a source node, a destination node and a full-duplex proactive eavesdropper who sends jamming signals for improving its eavesdropping performance. The problem of transmit power allocation for minimizing the average secrecy outage probability on all subcarriers is investigated under the assumptions that the channel state information (CSI) related to the eavesdropper is perfectly known and only channel distribution information (CDI) is known. Algorithms are proposed for the optimization problem and are shown to greatly outperform the benchmark algorithms.


Physical layer security Proactive eavesdropper Secrecy outage probability Channel distribution information 


  1. 1.
    Xu, D., Li, Q.: Resource allocation for cognitive radio with primary user secrecy outage constraint. IEEE Syst. J. 12, 893–904 (2018)CrossRefGoogle Scholar
  2. 2.
    Liu, Y., Chen, H.H., Wang, L.: Physical layer security for next generation wireless networks: theories, technologies, and challenges. IEEE Commun. Surv. Tutor. 19(1), 347–376 (2017)CrossRefGoogle Scholar
  3. 3.
    Xu, D., Li, Q.: Resource allocation for secure communications in cooperative cognitive wireless powered communication networks. IEEE Syst. J. 13(3), 2431–2442 (2019)CrossRefGoogle Scholar
  4. 4.
    Zhang, H., Xing, H., Cheng, J., Nallanathan, A., Leung, V.C.: Secure resource allocation for ofdma two-way relay wireless sensor networks without and with cooperative jamming. IEEE Trans. Ind. Inf. 12(5), 1714–1725 (2015)CrossRefGoogle Scholar
  5. 5.
    Tang, X., Ren, P., Han, Z.: Power-efficient secure transmission against full-duplex active eavesdropper: a game-theoretic framework. IEEE Access 5, 24632–24645 (2017)CrossRefGoogle Scholar
  6. 6.
    Tang, X., Ren, P., Wang, Y., Han, Z.: Combating full-duplex active eavesdropper: a hierarchical game perspective. IEEE Trans. Commun. 65(3), 1379–1395 (2017)CrossRefGoogle Scholar
  7. 7.
    Fang, H., Xu, L., Zou, Y., Wang, X., Choo, K.K.R.: Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication. IEEE Trans. Veh. Technol. 67(11), 10788–10799 (2018)CrossRefGoogle Scholar
  8. 8.
    Huang, W., Chen, W., Bai, B., Han, Z.: Wiretap channel with full-duplex proactive eavesdropper: a game theoretic approach. IEEE Trans. Veh. Technol. 67(8), 7658–7663 (2018)CrossRefGoogle Scholar
  9. 9.
    Liu, C., Lee, J., Quek, T.Q.: Secure transmission in the presence of full-duplex active eavesdropper. In: IEEE Global Communications Conference, pp. 1–6. IEEE (2017)Google Scholar
  10. 10.
    Li, L., Petropulu, A.P., Chen, Z.: Mimo secret communications against an active eavesdropper. IEEE Trans. Inf. Forensics Secur. 12(10), 2387–2401 (2017)CrossRefGoogle Scholar
  11. 11.
    Xu, D., Zhu, H.: Secure transmission for SWIPT IoT systems with full-duplex IoT devices. IEEE Internet Things J. 6(6), 10915–10933 (2019)CrossRefGoogle Scholar
  12. 12.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  13. 13.
    Xu, D., Li, Q.: Improving physical-layer security for primary users in cognitive radio networks. IET Commun. 11(15), 2303–2310 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.Nanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations