Adhesion to Glass–Ceramics: Concepts and Clinical Implications

  • Andressa Borin Venturini
  • Catina Prochnow
  • Luiz Felipe Valandro


The quality and durability of the adhesion among ceramic, resin cement, and tooth substrate are crucial to the clinical success of ceramic restorations. These factors are determined by bonding mechanisms guided by a specific surface treatment applied to promote micromechanical retention and chemical adhesion among the interfaces. Topographical changes of the cementation surface of ceramic restorations may be performed for bond improvements, consequently increasing the load-bearing ability under fatigue (fatigue resistance) of the restorations due to the interaction between the resin cement and the irregularities created by those surface modifications (e.g., acid etching, air abrasion). In this sense, it becomes important to elucidate some concepts related to the different glass–ceramic materials available on the dental market and clarify the correct surface treatment for each material to the clinicians, aiming for long-term success of ceramic restorations. In addition, glass–ceramics present different microstructures related to their chemical composition and arrangement, making it necessary to determine bonding procedures according to the glass–ceramic type. This chapter aims to clarify some concepts and characteristics regarding adhesion to glass–ceramic substrates to better guide dental clinicians.


Surface treatment Acid etching Bond strength Topographical changes Adhesive cementation Feldspathic ceramic Leucite-enhanced ceramic Lithium disilicate-based ceramic 


  1. 1.
    Valenti M, Valenti A. Retrospective survival analysis of 261 lithium disilicate crowns in a private general practice. Quintessence Int. 2009;40(7):573–9.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kelly JR. Dental ceramics: what is this stuff any may? J Am Dent Assoc. 2008;139(Suppl 4):4S–7S.PubMedCrossRefGoogle Scholar
  3. 3.
    Kelly JR. Dental ceramics: current thinking and trends. Dent Clin N Am. 2004;48(2):513–30.CrossRefGoogle Scholar
  4. 4.
    Amaral R, Ozcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater. 2006;22(3):283–90.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bottino MA, Valandro LF, Buso L, Scotti R. Effect of surface treatments on the resin bond to zirconium-based ceramic. Int J Prosthodont. 2005;18(1):60–5.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Brentel AS, Özcan M, Valandro LF, Alarça LG, Amaral R, Bottino MA. Microtensile bond strength of a resin cement to feldspathic ceramic after different etching and silanization regimens in dry and aged conditions. Dent Mater. 2007;23(11):1323–31.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ozcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater. 2003;19(8):725–31.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Valandro LF, Della Bona A, Bottino MA, Neisser MP. The effect of ceramic surface treatment on bonding to densely sintered alumina ceramic. J Prosthet Dent. 2005;93(3):253–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Valandro LF, Leite FPP, Scotti R, Bottino MA, Neisser MP. Effect of ceramic surface treatment on the microtensile bond strength between a resin cement and an alumina-based ceramic. J Adhes Dent. 2004;6(4):327–32.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Addison O, Marquis PM, Fleming GJ. The impact of hydrofluoric acid surface treatments on the performance of a porcelain laminate restorative material. Dent Mater. 2007;23(4):461–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hooshmand T, Parvizi S, Keshvad A. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics. J Prosthodont. 2008;17(5):415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kalavacharla VK, Lawson NC, Ramp LC, Burgess JO. Influence of etching protocol and silane treatment with a universal adhesive on lithium disilicate bond strength. Oper Dent. 2015;40(4):372–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Monteiro JB, Oliani MG, Guilardi LF, Prochnow C, Rocha Pereira GK, Bottino MA, de Melo RM, Valandro LF. Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: effect of etching time and hydrofluoric acid concentration. J Mech Behav Biomed Mater. 2018;77:375–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Neis CA, Albuquerque NLG, Albuquerque IS, Gomes EA, Souza-Filho CB, Feitosa VP, Spazzin AO, Bacchi A. Surface treatments for repair feldspathic, leucite- and lithium disilicate-reinforced glass ceramic using composite resin. Braz Dent J. 2015;26(2):152–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Prado M, Prochnow C, Marchionatti AME, Baldissara P, Valandro LF, Wandscher VF. Ceramic surface treatment with a single-component primer: resin adhesion to glass ceramics. J Adhes Dent. 2018;20(2):99–105.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Prochnow C, Pereira GKR, Venturini AB, Scherer MM, Rippe MP, Bottino MC, Kleverlaan CJ, Valandro LF. How does hydrofluoric acid etching affect the cyclic load-to-failure of lithium disilicate restorations? J Mech Behav Biomed Mater. 2018b;87:306–11.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Prochnow C, Venturini AB, Grasel R, Bottino MC, Valandro LF. Effect of etching with distinct hydrofluoric acid concentrations on the flexural strength of a lithium disilicate-based glass ceramic. J Biomed Mater Res B Appl Biomater. 2017;105(4):885–91.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Prochnow C, Venturini AB, Grasel R, Gündel A, Bottino MC, Valandro LF. Adhesion to a lithium disilicate glass ceramic etched with hydrofluoric acid at distinct concentrations. Braz Dent J. 2018c;29(5):492–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Prochnow C, Venturini AB, Guilardi LF, Pereira GKR, Burgo TAL, Bottino MC, Kleverlaan CJ, Valandro LF. Hydrofluoric acid concentrations: effect on the cyclic load-to-failure of machined lithium disilicate restorations. Dent Mater. 2018a;34(9):e255–63.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ramakrishnaiah R, Alkheraif AA, Divakar DD, Matinlinna JP, Vallittu PK. The effect of hydrofluoric acid etching duration on the surface micromorphology, roughness, and wettability of dental ceramics. Int J Mol Sci. 2016;17(6):1–17.CrossRefGoogle Scholar
  21. 21.
    Scherer MM, Prochnow C, Venturini AB, Pereira GKR, Burgo TAL, Rippe MP, Valandro LF. Fatigue failure load of an adhesively-cemented lithium disilicate glass-ceramic: conventional ceramic etching vs etch & prime one-step primer. Dent Mater. 2018;34(8):1134–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Venturini AB, Prochnow C, May LG, Bottino MC, Valandro LF. Influence of hydrofluoric acid concentration on the flexural strength of a feldspathic ceramic. J Mech Behav Biomed Mater. 2015b;48:241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Venturini AB, Prochnow C, May LG, Kleverlaan CJ, Valandro LF. Fatigue failure load of feldspathic ceramic crowns after hydrofluoric acid etching at different concentrations. J Prosthet Dent. 2018b;119(2):278–85.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Venturini AB, Prochnow C, Pereira GKR, Werner A, Kleverlaan CJ, Valandro LF. The effect of hydrofluoric acid concentration on the fatigue failure load of adhesively cemented feldspathic ceramic discs. Dent Mater. 2018a;34(4):667–75.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Venturini AB, Prochnow C, Rambo D, Gundel A, Valandro LF. Effect of hydrofluoric acid concentration on resin adhesion to a feldspathic ceramic. J Adhes Dent. 2015a;17(4):313–20.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Xiaoping L, Dongfeng R, Silikas N. Effect of etching time and resin bond on the flexural strength of IPS e max Press glass ceramic. Dent Mater. 2014;30(12):e330–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zogheib LV, Bona AD, Kimpara ET, McCabe JF. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz Dent J. 2011;22(1):45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Colares RCR, Neri JR, Souza AMB, Pontes KMF, Mendonça JS, Santiago SL. Effect of surface pretreatments on the microtensile bond strength of lithium-disilicate ceramic repaired with composite resin. Braz Dent J. 2013;24(4):349–52.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Souza RO, Castilho AA, Fernandes VV, Bottino MA, Valandro LF. Durability of microtensile bond to nonetched and etched feldspar ceramic: self-adhesive resin cements vs conventional resin. J Adhes Dent. 2011;13(2):155–62.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Spohr AM, Sobrinho LC, Consani S, et al. Influence of surface conditions and silane agent on the bond of resin to IPS empress 2 ceramic. Int J Prosthodont. 2003;16(3):277–82.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lise DP, Perdigão J, Ende AV, Zidan O, Lopes GC. Microshear bond strength of resin cements to lithium disilicate substrates as a function of surface preparation. Oper Dent. 2015;40(5):524–32.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Stacey GC. A shear stress analysis of the bonding of porcelain veneers to enamel. J Prosthet Dent. 1993;70(5):395–402.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Calamia JR. Etched porcelain facial veneers: a new treatment modality based on scientific and clinical evidence. N Y J Dent. 1983;53(6):255–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Horn HR. Porcelain laminate veneers bonded to etched enamel. Dent Clin N Am. 1983;27(4):671–84.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Guarda GB, Correr AB, Goncalves LS, Costa AR, Borges GA, Sinhoreti MA, Correr-Sobrinho L. Effects of surface treatments, thermocycling, and cyclic loading on the bond strength of a resin cement bonded to a lithium disilicate glass ceramic. Oper Dent. 2013;38(2):208–17.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain. J Dent. 1998;26(1):53–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Della Bona A, Borba M, Benetti P, Pecho OE, Alessandretti R, Mosele JC, Mores RT. Adhesion to dental ceramics. Curr Oral Health Rep. 2014;1(4):232–8.CrossRefGoogle Scholar
  38. 38.
    Jardel V, Degrange M, Picard B, Derrien G. Surface energy of etched ceramic. Int J Prosthodont. 1999;12(5):415–8.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater. 2012;28(5):467–77.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Della Bona A, Anusavice KJ, Hood JAA. Effect of ceramic surface treatment on tensile bond strength to resin cement. Int J Prosthodont. 2002;15(3):248–53.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Phoenix S, Shen C. Characterization of treated porcelain surfaces via dynamic contact angle analysis. Int J Prosthodont. 1995;8(2):187–94.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Amaral R, Ozcan M, Bottino MA, Valandro LF. Resin bonding to a feldspar ceramic after different ceramic surface conditioning methods: evaluation of contact angle, surface pH, and microtensile bond strength durability. J Adhes Dent. 2011;13(6):551–60.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Barghi N, Fischer DE, Vatani L. Effects of porcelain leucite content, types of etchants, and etching time on porcelain-composite bond. J Esthet Restor Dent. 2006;18(1):47–53.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Canay S, Hersek N, Ertan A. Effect of different acid treatments on a porcelain surface. J Oral Rehabil. 2001;28(1):95–101.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Naves LZ, Soares CJ, Moraes RR, Gonçalves LS, Sinhoreti MA, Correr-Sobrinho L. Surface/interface morphology and bond strength to glass ceramic etched for different periods. Oper Dent. 2010;35(4):420–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ozcan M, Volpato CA. Surface conditioning protocol for the adhesion of resin-based materials to glassy matrix ceramics: how to condition and why? J Adhes Dent. 2015;17(3):292–3.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc. 2006;137(Suppl):14S–21S.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ramos NC, Campos TMB, de La Paz IS, Machado JPB, Bottino MA, Cesar PF, Melo RM. Microstructure characterization and SCG of newly engineered dental ceramics. Dent Mater. 2016;32(7):870–8.CrossRefGoogle Scholar
  49. 49.
    Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent Clin N Am. 2011;55(2):333–52.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Belli R, Wendler M, de Ligny D, Cicconi MR, Petschelt A, Peterlik H, Lohbauer U. Chairside CAD/CAM materials. Part 1: measurement of elastic constants and microstructural characterization. Dent Mater. 2017;33(1):84–98.PubMedCrossRefGoogle Scholar
  51. 51.
    Apel E, Bernard A, Höland M, Müller R, Kappert H, Rheinberger V, Höland W. Phenomena and mechanisms of crack propagation in glass-ceramics. J Mech Behav Biomed Mater. 2008;1(4):313–25.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Belli R, Petschelt A, Hofner B, Hajtó J, Scherrer SS, Lohbauer U. Fracture rates and lifetime estimations of CAD/CAM all-ceramic restorations. J Dent Res. 2016;95(1):67–73.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lohbauer U, Müller FA, Petschelt A. Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials. Dent Mater. 2008;24(2):250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ritzberger C, Schweiger M, Höland W. Principles of crystal phase formation in Ivoclar Vivadent glass-ceramics for dental restorations. J Non-Cryst Solids. 2016;432:137–42.CrossRefGoogle Scholar
  55. 55.
    Chung KH, Liao JH, Duh JG, Chan DCN. The effects of repeated heat-pressing on properties of pressable glass-ceramics. J Oral Rehabil. 2009;36(2):132–41.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hölland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Emps2 and the IPS Empresss glass-ceramic. J Biomed Mater Res. 2000;53(4):297–303.CrossRefGoogle Scholar
  57. 57.
    Sundfeld Neto D, Naves LZ, Costa AR, Correr AB, Consani S, Borges GA, Correr-Sobrinho L. The effect of hydrofluoric acid concentration on the bond strength and morphology of the surface and interface of glass ceramics to a resin cement. Oper Dent. 2015;40(5):470–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Nishioka G, Prochnow C, Firmino A, Amaral M, Bottino MA, Valandro LF, Melo RM. Fatigue strength of several dental ceramics indicated for CAD-CAM monolithic restorations. Braz Oral Res. 2018;32:e53.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ilie N, Hickel R. Correlation between ceramics translucency and polymerization efficiency through ceramics. Dent Mater. 2008;24(7):908–14.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Guess PC, Strub JR, Steinhart N, Wolkewitz M, Stappert CF. All-ceramic partial coverage restorations – midterm results of a 5-year prospective clinical splitmouth study. J Dent. 2009;37(8):627–37.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Addison O, Fleming GJ. The influence of cement lute, thermocycling, and surface preparation on the strength of a porcelain laminate veneering material. Dent Mater. 2004;20(3):286–92.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999;81(6):652–61.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kelly JR, Giordano R, Pober R, Cima MJ. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont. 1990;3(5):430–40.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Rodrigues CDS, Guilardi LF, Follak AC, Prochnow C, May LG, Valandro LF. Internal adjustments decrease the fatigue failure load of bonded simplified lithium disilicate restorations. Dent Mater. 2018;34(9):225–35.CrossRefGoogle Scholar
  65. 65.
    Schestatsky R, Zucuni CP, Venturini AB, de Lima Burgo TA, Bacchi A, Valandro LF, Rocha Pereira GK. CAD-CAM milled versus pressed lithium-disilicate monolithic crowns adhesively cemented after distinct surface treatments: fatigue performance and ceramic surface characteristics. J Mech Behav Biomed Mater. 2019;94:144–54.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ozcan M, Allahbeickaraghi A, Dündar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Investig. 2012;16(1):15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Dennerlein K, Kiesewetter F, Kilo S, Jäger T, Göen T, Korinth G, Drexler H. Dermal absorption and skin damage following hydrofluoric acid exposure in an ex vivo human skin model. Toxicol Lett. 2016;248:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Derelanko MJ, Gad SC, Gavigan F, Dunn BJ. Acute dermal toxicity of dilute hydrofluoric acid. J Toxicol Cutan Ocul Toxicol. 1985;4(2):73–85.CrossRefGoogle Scholar
  69. 69.
    Carpena G, Ballarin A. Hydrofluoric acid—simple things you may do not know about something you are so habituated to use. Odovtos Int J Dent Sci. 2014;16:15–23.Google Scholar
  70. 70.
    Hatzifotis M, Williams A, Muller M, Pegg S. Hydrofluoric acid burns. Burns. 2004;30(2):156–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Dilber E, Yavuz T, Kara HB, Özturk AN. Comparison of the effects of surface treatments on roughness of two ceramic systems. Photomed Laser Surg. 2012;30(6):308–14.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kursoglu P, Motro PF, Yurdaguven H. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface. J Adv Prosthodont. 2013;5(2):98–103.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Menees TS, Lawson NC, Beck PR, Burgess JO. Influence of particle abrasion or hydrofluoric acid etching on lithium disilicate flexural strength. J Prosthet Dent. 2014;112(5):1164–70.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vechiato Filho AJ, dos Santos DM, Goiato MC, de Medeiros RA, Moreno A, Bonatto L. da R, Rangel EC. Surface characterization of lithium disilicate ceramic after nonthermal plasma treatment. J Prosthet Dent. 2014;112(5):1156–63.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yavuz T, Dilber E, Kara HB, Tuncdemir AR, Ozturk AN. Effects of different surface treatments on shear bond strength in two different ceramic systems. Lasers Med Sci. 2013;28(5):1233–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Cardenas AFM, Quintero-Calderon AS, Siqueira FSF, Campos VS, Wendlinger M, Pulido-Mora CA, Masson-Palacios MJ, Sarmiento-Delgado ML, Loguercio AD. Do different application modes improve the bonding performance of self-etching ceramic primer to lithium disilicate and feldspathic ceramics? J Adhes Dent. 2019;21(4):319–27.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Colombo LDA, Murillo-Gómez F, De Goes MF. Bond strength of CAD/CAM restorative materials treated with different surface etching protocols. J Adhes Dent. 2019;21(4):307–17.PubMedPubMedCentralGoogle Scholar
  78. 78.
    El-Damanhoury HM, Gaintantzopoulou MD. Self-etching ceramic primer versus hydrofluoric acid etching: etching efficacy and bonding performance. J Prosthodont Res. 2018;62(1):75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Maier E, Bordihn V, Belli R, Taschner M, Petschelt A, Lohbauer U, Zorzin J. New approaches in bonding to glass-ceramic: self-etch glass-ceramic primer and universal adhesives. J Adhes Dent. 2019;21(3):209–17.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Murillo-Gómez F, Palma-Dibb RG, De Goes MF. Effect of acid etching on tridimensional microstructure of etchable CAD/CAM materials. Dent Mater. 2018;34(6):944–55.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Murillo-Gómez F, De Goes MF. Bonding effectiveness of tooth-colored materials to resin cement provided by self-etching silane primer after short- and long-term storage. J Prosthet Dent. 2019;121(4):713.e1–8.CrossRefGoogle Scholar
  82. 82.
    Román-Rodríguez JL, Perez-Barquero JA, Gonzalez-Angulo E, Fons-Font A, Bustos-Salvador JL. Bonding to silicate ceramics: conventional technique compared with a simplified technique. J Clin Exp Dent. 2017;9(3):e384–6.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Siqueira FS, Alessi RS, Cardenas AF, Kose C, Souza Pinto SC, Bandeca MC, et al. New single-bottle ceramic primer: 6-month case report and laboratory performance. J Contemp Dent Pract. 2016;17(12):1033–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Tribst JPM, Monteiro JB, Venturini AB, Pereira GKR, Bottino MA, Melo RM, Valandro LF. Fatigue failure load of resin-bonded simplified lithium disilicate glass-ceramic restorations: effect of ceramic conditioning methods. J Adhes Dent. 2019;21(4):373–81.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: a review. Dent Mater. 2018;34(1):13–28.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Matinlinna JP, Vallittu PK. Bonding of resin composites to etchable ceramic surfaces—an insight review of the chemical aspects on surface conditioning. J Oral Rehabil. 2007;34(8):622–30.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Corazza PH, Cavalcanti SCM, Queiroz JRC, Bottino MA, Valandro LF. Effect of post-silanization heat treatments of silanized feldspathic ceramic on adhesion to resin cement. J Adhes Dent. 2013;15(5):473–9.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Matinlinna JP, Lassila LVJ, Özcan M, Yli-Urpo A, Vallittu PK. An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont. 2004;17(2):155–64.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Shimada Y, Yamaguchi S, Tagami J. Micro-shear bond strength of dual cured resin cement to glass ceramics. Dent Mater. 2002;18(5):380–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Edelhoff D, Ozcan M. To what extent does the longevity of fixed dental prostheses depend on the function of the cement? Working group 4 materials: cementation. Clin Oral Implants Res. 2007;18(3):S193–204.CrossRefGoogle Scholar
  91. 91.
    Miyazaki M, Onose H, Moore BK. Analysis of the dentin-resin interface by use of laser Raman spectroscopy. Dent Mater. 2002;18(8):576–80.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Yazici AR, Celik C, Ozgünaltay G, Dayangac B. Bond strength of different adhesive systems to dental hard tissues. Oper Dent. 2007;32(2):166–72.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Hitz T, Stawarczyk B, Fischer J, Hammerle CH, Sailer I. Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent Mater. 2012;28(11):1183–90.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Rohr N, Fischer J. Tooth surface treatment strategies for adhesive cementation. J Adv Prosthodont. 2017;9(2):85–92.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    DeMunck J, Vargas M, Van Landuyt K, Hikita K, Lambrechts P, Van Meerbeek B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent Mater. 2004;20(10):963–71.CrossRefGoogle Scholar
  96. 96.
    Baader K, Hiller KA, Buchalla GS, Federlin M. Self-adhesive luting of partial ceramic crowns: selective enamel etching leads to higher survival after 6.5 years in vivo. J Adhes Dent. 2016;18(1):69–79.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P. Microtensile bond strengths of an etch & rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent. 2003;28(5):647–60.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Senawongse P, Srihanon A, Muangmingsuk A, Harnirattisai C. Effect of dentine smear layer on the performance of self-etching adhesive systems: a micro-tensile bond strength study. J Biomed Mater Res B Appl Biomater. 2010;94(1):212–21.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Barbon FJ, Moraes RR, Boscato N, Alessandretti R, Spazzin AO. Feldspar ceramic strength and the reinforcing effect by adhesive cementation under accelerated aging. Braz Dent J. 2018;29(2):202–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Coelho NF, Barbon FJ, Machado RG, Boscato N, Moraes RR. Response of composite resins to preheating and the resulting strengthening of luted feldspar ceramic. Dent Mater. 2019;35(10):1430–38.Google Scholar
  101. 101.
    May LG, Kelly JR, Bottino MA, Hill T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing. Dent Mater. 2012;28(8):e99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Posritong S, Borges AL, Chu TM, Eckert GJ, Bottino MA, Bottino MC. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic. Dent Mater. 2013;29(11):e281–90.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Spazzin AO, Guarda GB, Oliveira-Ogliari A, Leal FB, Correr-Sobrinho L, Moraes RR. Strengthening of porcelain provided by resin cements and flowable composites. Oper Dent. 2016;41(2):179–88.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Van Dijken JW, Höglund-Aberg C, Olofsson AL. Fired ceramic inlays: a 6-year follow up. J Dent. 1998;26(3):219–25.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 16 years. Part III: effect of luting agent and tooth or tooth-substitute core structure. J Prosthet Dent. 2001;86(5):511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: a review of the current literature. J Prosthet Dent. 1998;80(3):280–301.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J Oral Rehabil. 2001;28(11):1022–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Archegas LR, Freire A, Vieira S, Caldas DB, Souza EM. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing. J Dent. 2011;39(11):804–10.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kilinc E, Antonson SA, Hardigan PC, Kesercioglu A. Resin cement color stability and its influence on the final shade of all-ceramics. J Dent. 2011;39:e30–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Scotti N, Comba A, Cadenaro M, Fontanive L, Breschi L, Monaco C, Scotti R. Effect of lithium disilicate veneers of different thickness on the degree of conversion and microhardness of a light-curing and a dual-curing cement. Int J Prosthodont. 2016;29(4):384–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lopes CCA, Rodrigues RB, Silva AL, Simamoto Júnior PC, Soares CJ, Novais VR. Degree of conversion and mechanical properties of resin cements cured through different all-ceramic systems. Braz Dent J. 2015;26(5):484–9.CrossRefGoogle Scholar
  112. 112.
    Wang L, D’Alpino PH, Lopes LG, Pereira JC. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. J Appl Oral Sci. 2003;11(3):162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cekic-Nagas I, Canay S, Sahin E. Bonding of resin core materials to lithium disilicate ceramics: the effect of resin cement film thickness. Int J Prosthodont. 2010;23(5):469–71.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Liu HL, Lin CL, Sun MT, Chang YH. Numerical investigation of macro- and micro-mechanics of a ceramic veneer bonded with various cement thicknesses using the typical and submodeling finite element approaches. J Dent. 2009;37(2):141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    May LG, Kelly JR, Bottino MA, Hill T. Influence of the resin cement thickness on the fatigue failure loads of CAD/CAM feldspathic crowns. Dent Mater. 2015;31(8):895–900.CrossRefGoogle Scholar
  116. 116.
    Mörmann WH, Bindl A, Lüthy H, Rathke A. Effects of preparation and luting system on all-ceramic computer-generated crowns. Int J Prosthodont. 1998;11(4):333–9.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Moro AFV, Ramos AB, Rocha GM, Perez CDR. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic. J Prosthet Dent. 2017;118(5):666–71.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Tian T, Tsoi JK, Matinlinna JP, Burrow MF. Aspects of bonding between resin luting cements and glass ceramic materials. Dent Mater. 2014;30(7):e147–62.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Hooshmand T, Daw R, van Noort R, Short RD. XPS analysis of the surface of leucite-reinforced feldspathic ceramics. Dent Mater. 2001;17(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Leite FPP, Özcan M, Valandro LF, Moreira CHC, Bottino MA, Kimpara ET. Effect of the etching duration and the ultrasonic cleaning on microtensile bond strength between feldspathic ceramic and resin cement. J Adhes. 2013;89(3):159–73.CrossRefGoogle Scholar
  121. 121.
    Belli R, Guimarães JC, Filho AM, Vieira LC. Post-etching cleaning and resin/ceramic bonding: microtensile bond strength and EDX analysis. J Adhes Dent. 2010;12(4):295–303.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Magalhães APR, Decurcio RA, Ojeda GPD, Texeira TR, Cardoso PC. Does post-etching cleaning influence bond strength of lithium disilicate laminate veneers? Compend Contin Educ Dent. 2017;38(5):e9–e12.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Bottino MA, Snellaert A, Bergoli CD, Özcan M, Bottino MC, Valandro LF. Effect of ceramic etching protocols on resin bond strength to a feldspar ceramic. Oper Dent. 2015;40(2):E40–6.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Saavedra G, Ariki EK, Federico CD, Galhano G, Zamboni S, Baldissara P, Valandro LF. Effect of acid neutralization and mechanical cycling on the microtensile bond strength of glass-ceramic inlays. Oper Dent. 2009;34(2):211–6.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Angkasith P, Burgess JO, Bottino MC, Lawson NC. Cleaning methods for zirconia following salivary contamination. J Prosthodont. 2016;25(5):375–9.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Feitosa SA, Patel D, Borges AL, Alshehri EZ, Bottino MA, Özcan M, Valandro LF, Bottino MC. Effect of cleansing methods on saliva-contaminated zirconia—an evaluation of resin bond durability. Oper Dent. 2015;40(2):163–71.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Samran A, Al-Ammari A, El Bahra S, Halboub E, Wille S, Kern M. Bond strength durability of self-adhesive resin cements to zirconia ceramic: an in vitro study. J Prosthet Dent. 2019;121(3):477–84.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Dal Piva AMO, Carvalho RLA, Lima AL, Bottino MA, Melo RM, Valandro LF. Silica coating followed by heat-treatment of MDP-primer for resin bond stability to yttria-stabilized zirconia polycrystals. J Biomed Mater Res B Appl Biomater. 2019;107(1):104–11.Google Scholar
  129. 129.
    de Carvalho RF, Cotes C, Kimpara ET, Leite FP, Özcan M. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic. Braz Dent J. 2015;26(1):44–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Cotes C, de Carvalho RF, Kimpara ET, Leite FP, Ozcan M. Can heat treatment procedures of pre-hydrolyzed silane replace hydrofluoric acid in the adhesion of resin cement to feldspathic ceramic? J Adhes Dent. 2013;15(6):569–74.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G. Porcelain veneers: a review of the literature. J Dent. 2000;28(3):163–77.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Walls AW. The use of adhesively retained all-porcelain veneers during the management of fractured and worn anterior teeth, part II: clinical results after 5 years of follow-up. Br Dent J. 1995;178(9):337–40.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Fradeani M, Redemagni M, Corrado M. Porcelain laminate veneers: 6- to 12-year clinical evaluation—a retrospective study. Int J Periodontics Restorative Dent. 2005;25(1):9–17.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Beier US, Kapferer I, Burtscher D, Dumfahrt H. Clinical performance of porcelain laminate veneers for up to 20 years. Int J Prosthodont. 2012;25(1):79–85.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Dumfahrt H, Schäffer H. Porcelain laminate veneers. A retrospective evaluation after 1 to 10 years of service: part II—clinical results. Int J Prosthodont. 2000;13(1):9–18.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Layton D, Walton. An up to 16-year prospective study of 304 porcelain veneers. Int J Prosthodont. 2007;20(4):389–96.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Rodrigues SB, Franken P, Celeste RK, Leitune VCB, Collares FM. CAD/CAM or conventional ceramic materials restorations longevity: a systematic review and meta-analysis. J Prosthodont Res. 2019;63(4):389–95.Google Scholar
  138. 138.
    Petridis HP, Zekeridou A, Malliari M, Tortopidis D, Koidis P. Survival of ceramic veneers made of different materials after a minimum follow-up period of five years: a systematic review and meta-analysis. Eur J Esthet Dent. 2012;7(2):138–52.PubMedPubMedCentralGoogle Scholar
  139. 139.
    D’Arcangelo C, De Angelis F, Vadini M, D’Amario M. Clinical evaluation on porcelain laminate veneers bonded with light-cured composite: results up to 7 years. Clin Oral Investig. 2012;16(4):1071–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Guess PC, Stappert C. Midterm results of a 5-year prospective clinical investigation of extended ceramic veneers. Dent Mater. 2008;24(6):804–13.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Oztürk E, Bolay S. Survival of porcelain laminate veneers with different degrees of dentin exposure: 2-year clinical results. J Adhes Dent. 2014;16(5):481–9.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Rinke S, Lange K, Ziebolz D. Retrospective study of extensive heat-pressed ceramic veneers after 36 months. J Esthet Restor Dent. 2013;25(1):42–52.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Rinke S, Pabel AK, Schulz X, Rödiger M, Schmalz G, Ziebolz D. Retrospective evaluation of extended heat-pressed ceramic veneers after a mean observational period of 7 years. J Esthet Restor Dent. 2018;30(4):329–37.Google Scholar
  144. 144.
    Cötert HS, Dündar M, Oztürk B. The effect of various preparation designs on the survival of porcelain laminate veneers. J Adhes Dent. 2009;11(5):405–11.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andressa Borin Venturini
    • 1
  • Catina Prochnow
    • 1
  • Luiz Felipe Valandro
    • 1
  1. 1.MSciD and PhD Post-Graduation Programs in Oral Science (Prosthodontics Units), Faculty of DentistryFederal University of Santa Maria (UFSM)Santa MariaBrazil

Personalised recommendations