Advertisement

Adaptive Exponential Integrators for MCTDHF

  • Winfried AuzingerEmail author
  • Alexander Grosz
  • Harald Hofstätter
  • Othmar Koch
Conference paper
  • 21 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

We compare exponential-type integrators for the numerical time-propagation of the equations of motion arising in the multi-configuration time-dependent Hartree-Fock method for the approximation of the high-dimensional multi-particle Schrödinger equation. We find that among the most widely used integrators like Runge-Kutta, exponential splitting, exponential Runge-Kutta, exponential multistep and Lawson methods, exponential Lawson multistep methods with one predictor/corrector step provide optimal stability and accuracy at the least computational cost, taking into account that the evaluation of the nonlocal potential terms is by far the computationally most expensive part of such a calculation. Moreover, the predictor step provides an estimator for the time-stepping error at no additional cost, which enables adaptive time-stepping to reliably control the accuracy of a computation.

Keywords

Multi-configuration time-dependent Hartree-Fock method Time integration Splitting methods Exponential integrators Lawson methods Local error estimators Adaptive stepsize selection 

References

  1. 1.
    Calvo, M., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math 102, 367–381 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Certaine, J.: The solution of ordinary differential equations with large time constants. In: Ralston, A., Wilf, H. (eds.) Mathematical Methods for Digital Computers, pp. 128–132. Wiley, Hoboken (1960)Google Scholar
  3. 3.
    Frenkel, J.: Advanced General Theory Wave Mechanics. Clarendon Press, Oxford (1934)zbMATHGoogle Scholar
  4. 4.
    Friedli, A.: Verallgemeinerte Runge-Kutta Verfahren zur Loesung steifer Differentialgleichungssysteme. In: Bulirsch, R., Grigorieff, R.D. (eds.) Numerical Treatment of Differential Equations. Lecture Notes in Mathematics, vol. 631, pp. 35–50. Springer, Heidelberg (1978).  https://doi.org/10.1007/BFb0067462CrossRefGoogle Scholar
  5. 5.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hochbruck, M., Ostermann, A.: On the convergence of Lawson methods for semilinear stiff problems. CRC Preprint 2017/9, KIT Karlsruhe Institute of Technology (2017). https://www.waves.kit.edu/downloads/CRC1173_Preprint_2017-9.pdf
  8. 8.
    Koch, O.: Convergence of exponential Lawson-multistep methods for the MCTDHF equations, to appear in M2AN. Model. Numer. Anal. 53, 2109–2119 (2019) CrossRefGoogle Scholar
  9. 9.
    Koch, O., Neuhauser, C., Thalhammer, M.: Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. M2AN Math. Model. Numer. Anal. 47, 1265–1284 (2013)CrossRefGoogle Scholar
  10. 10.
    Lawson, J.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Norsett, S.P.: An A-stable modification of the Adams-Bashforth methods. In: Morris, J.L. (ed.) Conference on the Numerical Solution of Differential Equations. LNM, vol. 109, pp. 214–219. Springer, Heidelberg (1969).  https://doi.org/10.1007/BFb0060031CrossRefGoogle Scholar
  12. 12.
    Zanghellini, J., Kitzler, M., Brabec, T., Scrinzi, A.: Testing the multi-configuration time-dependent Hartree-Fock method. J. Phys. B: At. Mol. Phys. 37, 763–773 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Institute of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations