Advertisement

Identification of Heat Conductivity in (2+1)D Equation as a Function of Time

  • Tchavdar T. Marinov
  • Rossitza S. MarinovaEmail author
Conference paper
  • 73 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

The considered problem for identifying the time–dependent heat conductivity coefficient from over–posed boundary data belongs to a class of inverse problems. The proposed solution uses a variational approach for identifying the coefficient. The inverse problem is reformulated as a higher–order elliptic boundary–value problem for minimization of a quadratic functional of the original equation. The resulting system consists of a well–posed fourth–order boundary-value problem for the temperature and an explicit equation for the unknown heat conductivity coefficient. The obtained boundary–value problem is solved by means of an iterative procedure, which is thoroughly validated.

Keywords

Heat conductivity Inverse problem Variational method Boundary data 

References

  1. 1.
    Kakac, S., Yener, Y., Naveira-Cotta, C.P.: Heat Conduction, 5th edn. CRC Press, Boca Raton (2018)CrossRefGoogle Scholar
  2. 2.
    Christov, C.I., Marinov, T.T.: Identification of heat-conduction coefficient via method of variational imbedding. Math. Comput. Model. 27(3), 109–116 (1998).  https://doi.org/10.1016/S0895-7177(97)00269-0MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hadała, B., Malinowski, Z., Szajding, A.: Solution strategy for the inverse determination of the specially varying heat transfer coefficient. Int. J. Heat Mass Transf. 104, 993–1007 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.093CrossRefGoogle Scholar
  4. 4.
    Hadamard, J.: Le Probleme de Cauchy et les Equations aux Derivatives Partielles Lineares Hyperboliques. Hermann, Paris (1932).  https://doi.org/10.1090/S0002-9904-1934-05815-4
  5. 5.
    Kügler, P.: Identification of a temperature dependent heat conductivity from single boundary measurements. SIAM J. Numer. Anal. 41(4), 1543–1563 (2004).  https://doi.org/10.1137/S0036142902415900MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lesnic, D., Elliott, L., Ingham, D.B.: Identification of the thermal conductivity and heat capacity in unsteady nonlinear heat conduction problems using the boundary element method. J. Comput. Phys. 126, 410–420 (1996).  https://doi.org/10.1006/jcph.1996.0146CrossRefzbMATHGoogle Scholar
  7. 7.
    Malinowski, Z., Cebo-Rudnicka, A., Hadała, B., Szajding, A.: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray. Inverse Prob. Sci. Eng. 23(3), 518–556 (2014).  https://doi.org/10.1080/17415977.2014.923417CrossRefGoogle Scholar
  8. 8.
    Nedin, R., Nesterov, S., Vatulyan, A.: Identification of thermal conductivity coefficient and volumetric heat capacity of functionally graded materials. Int. J. Heat Mass Transf. 102, 213–218 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.027CrossRefGoogle Scholar
  9. 9.
    Marinov, T.T., Christov, C.I., Marinova, R.S.: Novel numerical approach to solitary-wave solutions identification of Boussinesq and Korteweg-de Vries equations. Int. J. Bifurcat. Chaos 15(2), 557–565 (2005).  https://doi.org/10.1142/S0218127405012211MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Marinov, T.T., Marinova, R.S., Christov, C.I.: Coefficient identification in elliptic partial differential equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 372–379. Springer, Heidelberg (2006).  https://doi.org/10.1007/11666806_42CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Southern University at New OrleansNew OrleansUSA
  2. 2.Concordia University of EdmontonEdmontonCanada

Personalised recommendations