Advertisement

Optimal Control Problem of a Metronomic Chemotherapy

  • Dieter Grass
  • Valeriya LykinaEmail author
Conference paper
  • 81 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

Abstract

In this paper we consider a metronomic chemotherapy model which is optimally controlled over the expected future lifetime of the particular patient. Under certain assumptions concerning the distribution of the future lifetime of the patient, it can be easily transformed to a purely deterministic optimal control problem with infinite horizon. To solve the latter the open source software package OCMat was used. Solutions to optimal control problems with \(L_2-\) and regularized \(L_1-\)objective functionals have been compared.

Keywords

Infinite horizon optimal control Metronomic chemotherapy Numerical analysis 

References

  1. 1.
    Browder, T., et al.: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886 (2000)Google Scholar
  2. 2.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I: General Theory. Wiley-Interscience, New York (1988)zbMATHGoogle Scholar
  3. 3.
    Elstrodt, J.: Maß und Integrationstheorie. Springer, Berlin (1996).  https://doi.org/10.1007/978-3-662-08528-8CrossRefzbMATHGoogle Scholar
  4. 4.
    Graß, D.: Numerical computation of the optimal vector field in a fishery model. J. Econ. Dyn. Control 36(10), 1626–1658 (2012)CrossRefGoogle Scholar
  5. 5.
    Hanahan, D., Bergers, G., Bergsland, E.: Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105(8), 145–147 (2000)CrossRefGoogle Scholar
  6. 6.
    Klement, G., et al.: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without over toxicity. J. Clin. Invest. 105(8), R15–R24 (2000)CrossRefGoogle Scholar
  7. 7.
    Kufner, A.: Weighted Sobolev Spaces. Wiley, Chichester (1985)zbMATHGoogle Scholar
  8. 8.
    Ledzewicz, U., Schättler, H.: A review of optimal chemotherapy protocols: from MTD towards metronomic therapy. J. Math. Model. Nat. Phenom. 9(4), 131–152 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lykina, V., Pickenhain, S.: Weighted functional spaces approach in infinite horizon optimal control problems: a systematic analysis of hidden advantages and opportunities. J. Math. Anal. Appl. 454(1), 195–218 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Interdisciplinary Applied Mathematics, vol. 42. Springer, New York (2015).  https://doi.org/10.1007/978-1-4939-2972-6CrossRefzbMATHGoogle Scholar
  11. 11.
    Valdez, E.A.: Survival models (2014). https://studylib.net/doc/8854157/survival-models
  12. 12.
    Yosida, K.: Functional Analysis. Springer, New York (1974)CrossRefGoogle Scholar
  13. 13.
    Pasquier, E., Ledzewicz, U.: More is not necessarily better: metronomic chemotherapy. Newslett. Soc. Math. Biol. 26(2) (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Research Unit Operations Research and Control of Systems (ORCOS)Vienna University of TechnologyViennaAustria
  2. 2.Institute for Mathematics, Department of OptimizationBrandenburg University of Technology at Cottbus-SenftenbergCottbusGermany

Personalised recommendations