LSSC 2019: Large-Scale Scientific Computing pp 203-209

# Application of the Global Optimization Methods for Solving the Parameter Estimation Problem in Mathematical Immunology

• V. V. Zheltkova
• Dmitry A. Zheltkov
• G. A. Bocharov
• Eugene Tyrtyshnikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11958)

## Abstract

Mathematical modeling is widely used in modern immunology. The availability of biologically meaningful and detailed mathematical models permits studying the complex interactions between the components of a biological system and predicting the outcome of the therapeutic interventions. However, the incomplete theoretical understanding of the immune mechanism leads to the uncertainty of model structure and the need of model identification. This process is iterative and each step requires data-based model calibration. When the model is highly detailed, the considerable part of model parameters can not be measured experimentally or found in literature, so one has to solve the parameter estimation problem. Using the maximum likelihood framework, the parameter estimation leads to minimization problem for least square functional, when the observational errors are normally distributed. In this work we presented different computational approaches to the treatment of global optimization problem, arising in parameter estimation. We consider two high-dimensional mathematical models of HIV (human immunodeficiency virus)-infection dynamics as examples. The ODE (ordinary differential equations) and DDE (delay differential equations) versions of models were studied. For these models we solved the parameter estimation problem using a number of numerical global optimization techniques, including the optimization method, based on the tensor-train decomposition (TT). The comparative analysis of obtained results showed that the TT-based optimization technique is in the leading group of the methods ranked according to their performance in the parameter estimation for ODE and DDE versions of both models.

## Keywords

Mathematical immunology Parameter estimation Global optimization Model identification

## References

1. 1.
Germain, R., Meier-Schellersheim, M.: Systems biology in immunology: a computational modeling perspective. Annu. Rev. Immunol. 29, 527–85 (2011)
2. 2.
Zheltkov, D., Oferkin, I., Katkova, E., Sulimov, A., Sulimov, V., Tyrtyshnikov, E.: TTDock: a docking method based on tensor train decompositions. Vychislitel’nye Metody i Programmirovanie 4(3), 279–291 (2013)Google Scholar
3. 3.
Bocharov, G., et al.: Mathematical Immunology of Virus Infections. Springer, Cham (2018).
4. 4.
Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J., Blom, J.: Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886–902 (2009)
5. 5.
Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLOS Comput. Biol. 6(3), e1000696 (2010)
6. 6.
Zheltkova, V., Zheltkov, D., Grossman, Z., Bocharov, G., Tyrtyshnikov, E.: Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology. J. Inverse Ill-posed Probl. 26(1), 51–66 (2018)
7. 7.
Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)
8. 8.
Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
9. 9.
Bocharov, G., Chereshnev, V., et al.: Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 7(5), 78–104 (2012)
10. 10.
Grossman, Z., et al.: CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med. 8(4), 319 (2002)
11. 11.
Perelson, A.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2(1), 28 (2002)
12. 12.
Adams, B., et al.: HIV dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math. 184(1), 10–49 (2005)
13. 13.
Marchuk, G.: Mathematical Modelling of Immune Response in Infectious Diseases, vol. 395. Springer, Heidelberg (2013).
14. 14.
Simonov, M.: Modeling adaptive regulatory T-cell dynamics during early HIV infection. PLoS ONE 7(4), e33924 (2012)
15. 15.
Baker, C., Bocharov, G., Rihan, F.: A report on the use of delay differential equations in numerical modelling in the biosciences. Manchester Centre for Computational Mathematics, Manchester, UK (1999)Google Scholar
16. 16.
Zheltkova, V., Zheltkov, D., Bocharov, G. : Modelling HIV infection: model identification and global sensitivity analysis. Math. Biol. Bioinform. 14(1), 19–33 (2019). (in Russian)Google Scholar
17. 17.
The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/wiki/index.php/NLopt. Accessed 27 Feb 2019
18. 18.
Kaelo, P., Ali, M.: Some variants of the controlled random search algorithm for global optimization. J. Optim. Theory Appl. 130(2), 253–264 (2006)
19. 19.
Kan, R.: Stochastic global optimization methods. Math. Program. 39(1) (1987)Google Scholar
20. 20.
Rowan, T.: Functional stability analysis of numerical algorithms (1990)Google Scholar
21. 21.
Runarsson, T., Yao X.: Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(2), 233–243 (2005)Google Scholar
22. 22.
Santos, C., Goncalves, M., Hernandez-Figueroa, H.: Designing novel photonic devices by bio-inspired computing. IEEE Photonics Technol. Lett. 22(15), 1177–1179 (2010)
23. 23.
Munier, M., Kelleher, A.: Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection. Immunol. Cell Biol. 85(1), 6–15 (2007)
24. 24.
Hindmarsh, A., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. (TOMS) 31(3), 363–396 (2005)
25. 25.
Bocharov, G., Romanyukha, A.: Numerical solution of delay-differential equations by linear multistep methods: algorithm and programme. Preprint No. 117. Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow (1986). (in Russian)Google Scholar

© Springer Nature Switzerland AG 2020

## Authors and Affiliations

1. 1.Marchuk Institute of Numerical Mathematics of the Russian Academy of SciencesMoscowRussia
2. 2.Lomonosov Moscow State UniversityMoscowRussia