Advertisement

The Use of Graphs to Explore the Network Paradigm in Urban and Territorial Studies

  • Mara BalestrieriEmail author
  • Amedeo Ganciu
Conference paper
  • 226 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1140)

Abstract

As a result of the evolution of the ways of inhabiting and of the ways the economy has evolved in the post-industrial age, the network paradigm has become the most appropriate framework to describe urban and territorial processes. In overcoming the vision of space as a set of areas and points in which the reciprocal position is the main object of the analysis, exploring of internal and external relations to settlement and production systems has become the key element for examining reality. Therefore, finding appropriate tools and methods for examining networks has become fundamental in the studies aimed at understanding the city and territory. In this framework, the graph theory, which allows an analysis of the metric and topological properties of binary relationships represents an increasingly used means for modelling and studying networks also in the science of planning. The visualizations that can be achieved by graph theory in terms of urban and territorial processes have the potential to produce intelligible images of complex phenomena, which, otherwise, would be difficult to describe. The graphic representation of the urban and territorial phenomena is decisive, but sometimes it is underused in influencing public opinion and also the opinions of decision makers and administrators. In this framework this paper reflects on the effectiveness of graphs for exploring the network paradigm in urban and territorial areas under different profiles: communicative effectiveness, analytical effectiveness and interpretive effectiveness.

Keywords

Networks study Territorial planning Graphs theory Communication Visualization 

References

  1. Albrechts, L., Mandelbaum, S. (eds.): The Network Society: A New Context for Planning. Routledge, London (2007)Google Scholar
  2. Andrásfai, B.: Introductory Graph Theory. A. Hilger, Bristol (1977)zbMATHGoogle Scholar
  3. Bhat, C., Handy, S., Kockelman, K., Mahmassani, H., Chen, Q., Weston L.: Development of an urban accessibility index: literature review. Center for Transportation Research, University of Texas at Austin (2000)Google Scholar
  4. Biggs, N.: Graph Theory 1736–1936. Clarendon Press, Oxford (1976)zbMATHGoogle Scholar
  5. Blythe, J., McGrath, C., Krackhardt D.C., Krackhardt D.: The effect of graph layout on inference from social network data. In: Brandenburg F.J. (eds.) Graph Drawing. GD 1995. Lecture Notes in Computer Science, vol. 1027. Springer, Heidelberg (1996)Google Scholar
  6. Bollobas, B.: Modern Graph Theory. Springer, London and New York (2013)zbMATHGoogle Scholar
  7. Breslow, L.A., Trafton, G.J., Ratwani, R.M.: A perceptual process approach to selecting color scales for complex visualizations. J. Exp. Psychol.: Appl. 15, 25–34 (2009)Google Scholar
  8. Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  9. Camagni, R., Capello, R.: The city network paradigm: theory and empirical evidence. In: Capello, R., Nijkamp, P. (eds.) Urban Dynamics and Growth: Advances in Urban Economics, pp. 495–529. Emerald Group Publishing (2005)Google Scholar
  10. Dematteis, G.: Modelli urbani a rete. In: Curti, F., Diappi, L. (a cura di) Gerarchie e reti di città, FrancoAngeli, Milano (1991)Google Scholar
  11. Derrible, S., Kennedy, C.: Applications of graph theory and network science to transit network design. Transp. Rev. 31(4), 495–519 (2011)CrossRefGoogle Scholar
  12. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing – Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)zbMATHGoogle Scholar
  13. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  14. Frees, E.W., Miller, R.B.: Designing effective graphs. North Am. Actuar. J. 2(2), 53–70 (1998)MathSciNetCrossRefGoogle Scholar
  15. Ganciu, A, Balestrieri, M., Cicalò, E.: Visualising the research on visual landscapes. Graph representation and network analysis of international bibliography on landscape. In: Proceeding of XIV International Forum Le Vie dei Mercanti, 16–17 Giugno 2016, Napoli (2016)Google Scholar
  16. Ganciu, A., Balestrieri, M., Imbroglini, C., Toppetti, F.: Dynamics of metropolitan landscapes and daily mobility flows in the Italian context. An analysis based on the theory of graphs. Sustainability 10(3), 596 (2018)CrossRefGoogle Scholar
  17. Gattuso, D., Miriello, E.: Compared analysis of metro networks supported by graph theory. Netw. Spat. Econ. 5(4), 395–414 (2005)MathSciNetCrossRefGoogle Scholar
  18. Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout techniques for information visualisation. Inform. Vis. 12(324), 324–357 (2013)CrossRefGoogle Scholar
  19. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)MathSciNetCrossRefGoogle Scholar
  20. González, P.B., Gómez-Delgado, M., Benavente, F.A.: Vector-based cellular automata: exploring new methods of urban growth simulation with cadastral parcels and graph theory. In: Proceedings of the CUPUM 2015, Cambridge, MA, USA, 7–10 July 2015Google Scholar
  21. Heckmann, T., Schwanghart, W., Phillips, J.: Graph theory—recent developments of its application in geomorphology. Geomorphology 243, 130–146 (2015)CrossRefGoogle Scholar
  22. Hegarty, M.: The cognitive science of visual-spatial displays: implications for design. TopiCS 3(3), 446–474 (2011)Google Scholar
  23. Hegarty, M., Canham, M., Fabrikant, S.I.: Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. J. Exp. Psychol. Learn. Mem. Cogn. 36, 37–53 (2010)CrossRefGoogle Scholar
  24. Jungnickel, D.: Graphs, Networks and Algorithms. Springer, New York (2004)zbMATHGoogle Scholar
  25. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. Springer, New York (2001)zbMATHGoogle Scholar
  26. Meijers, E.: From central place to network model: theory and evidence of a paradigm change. Tijdschrift voor Econ. Soc. Geogr. 98(2), 245–259 (2007)CrossRefGoogle Scholar
  27. Maciocco, G., Tagliagambe, S.: La città possibile. Edizioni Dedalo, Bari (1997)Google Scholar
  28. Magnaghi, A.: La rappresentazione identitaria del territorio Atlanti, codici, figure, paradigmi per il progetto locale. Alinea, Firenze (2005). (a cura di)Google Scholar
  29. Minor, E.S., Urban, D.L.: A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22(2), 297–307 (2008)CrossRefGoogle Scholar
  30. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  31. Novick, L.R., Catley, K.M.: Understanding phylogenies in biology: the influence of a Gestalt perceptual principle. J. Exp. Psychol. 13, 197–223 (2007)Google Scholar
  32. Parthasarathi, P.: Network structure and metropolitan mobility. J. Transp. Land Use 7(2), 153–170 (2014)CrossRefGoogle Scholar
  33. Peebles, D., Cheng, P.C.H.: Modeling the effect of task and graphical representation on response latency in a graph-reading task. Hum. Factors 45, 28–46 (2003)CrossRefGoogle Scholar
  34. Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environ. Plann. B 35(5), 705–725 (2006)CrossRefGoogle Scholar
  35. Schulz, H.J., Heidrun, S.: Visualizing graphs - a generalized view. In: Proceedings Tenth International Conference on Information Visualisation (IV 2006), London, 5–7 July 2006Google Scholar
  36. Sevtsuk, A., Mekonnen, M.: Urban network analysis. Rev. Int. Géom. 2, 287–305 (2012)CrossRefGoogle Scholar
  37. Shah, P., Freedman, E.G., Vekiri, I.: The comprehension of quantitative information in graphical displays. In: Shah, P., Miyake, A. (eds.) The Cambridge handbook of visual spatial thinking. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  38. Simkin, D.K., Hastie, R.: An information-processing analysis of graph perception. J. Am. Stat. Assoc. 82, 454–465 (1987)CrossRefGoogle Scholar
  39. Szmytkie, R.: Application of graph theory to the morphological analysis of settlements. Quaest. Geogr. 36(4), 65–80 (2017)CrossRefGoogle Scholar
  40. Trudeau, R.J.: Introduction to Graph Theory. Kent State University Press (2013)Google Scholar
  41. Yeh, M., Wickens, C.D.: Attentional filtering in the design of electronic map displays: a comparison of color coding, intensity coding, and decluttering techniques. Hum. Factors 43, 543–562 (2001)CrossRefGoogle Scholar
  42. Zhang, J., Norman, D.A.: Representations in distributed cognitive tasks. Cogn. Sci. 18, 87–122 (1994)CrossRefGoogle Scholar
  43. Zhong, C., Müller, S., Huang, A.X., Michael, B.M., Schmitt, G.: Detecting the dynamics of urban structure through spatial network analysis. J. Geogr. Inform. Sci. 28(11), 2178–2199 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Università di SassariSassariItaly
  2. 2.CNRRomeItaly

Personalised recommendations