Immunotherapy pp 295-307 | Cite as

Immune-Related Oral, Otologic, and Ocular Adverse Events

  • Akanksha Srivastava
  • Nagham Al-Zubidi
  • Eric Appelbaum
  • Dan S. Gombos
  • Marc-Elie Nader
  • Paul W. Gidley
  • Mark S. ChambersEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1244)


Emerging immunotherapy agents, such as immune checkpoint inhibitors, have shown remarkable promise in the treatment of various malignancies. These drugs selectively target different steps in the immune response cascade to upregulate the body’s normal response to cancer. Due to the novelty of these therapeutic agents, their toxicity profile is less well understood.

Meta-analysis results reveal that the overall prevalence of oral mucositis, stomatitis, and xerostomia is lower with checkpoint inhibitors compared to conventional chemotherapy, and head and neck radiation therapy. However, the widespread use of immunotherapy reveals new oral mucosal barrier adverse events, including bullous pemphigoid, mucous membrane pemphigoid, and lichenoid mucositis. Audiovestibular dysfunction can occur from autoimmune-mediated pathways of immunotherapy (adoptive cell) with limited treatment options. Such auditory complications can lead to speech recognition deficits and sensorineural hearing loss. Ocular toxicities are among the most common adverse events resulting from the use of these agents. The majority of ocular immune-related adverse events (irAEs) are mild, low-grade, non-sight threatening, such as blurred vision, conjunctivitis, and ocular surface disease. Serious and sight-threatening events, including corneal perforation, optic neuropathy, and retinal vascular occlusion, can occur but are infrequent. In this chapter, we review the current evidence on the clinical manifestations of oral, audiovestibular, and ocular immune-related adverse events (i.e., irAEs).


Oral adverse events Hearing loss Ocular adverse events Immune-related ocular toxicities Immune-related otologic toxicities Immune-related oral toxicities Checkpoint inhibitors Ipilimumab Pembrolizumab Nivolumab Anti-PD-1/PD-L1 CTLA-4 Atezolizumab 


  1. 1.
    Centerwatch Database of FDA Approved Drugs.[Available from:
  2. 2.
    Fraunfelder FT. Clinical ocualr toxicology. Saunders Elvevier; 2008.Google Scholar
  3. 3.
    Lalla RV, Peterson DE. Oral mucositis. Dent Clin N Am. 2005;49(1):167–84.. ixPubMedCrossRefGoogle Scholar
  4. 4.
    Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, et al. Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100(9 Suppl):1995–2025.PubMedCrossRefGoogle Scholar
  5. 5.
    Treister N, Sonis S. Mucositis: biology and management. Curr Opin Otolaryngol Head Neck Surg. 2007;15(2):123–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lalla RV, Sonis ST, Peterson DE. Management of oral mucositis in patients who have cancer. Dent Clin N Am. 2008;52(1):61–77.. viiiPubMedCrossRefGoogle Scholar
  7. 7.
    Sonis ST. The pathobiology of mucositis. Nat Rev Cancer. 2004;4(4):277–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Berger K, Schopohl D, Bollig A, Strobach D, Rieger C, Rublee D, et al. Burden of oral mucositis: a systematic review and implications for future research. Oncol Res Treat. 2018;41(6):399–405.PubMedCrossRefGoogle Scholar
  9. 9.
    Pinna R, Campus G, Cumbo E, Mura I, Milia E. Xerostomia induced by radiotherapy: an overview of the physiopathology, clinical evidence, and management of the oral damage. Ther Clin Risk Manag. 2015;11:171–88.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jensen SB, Pedersen AM, Vissink A, Andersen E, Brown CG, Davies AN, et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: prevalence, severity and impact on quality of life. Support Care Cancer. 2010;18(8):1039–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Jensen SB, Pedersen AM, Reibel J, Nauntofte B. Xerostomia and hypofunction of the salivary glands in cancer therapy. Support Care Cancer. 2003;11(4):207–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):39.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55.PubMedCrossRefGoogle Scholar
  14. 14.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Owosho AA, Scordo M, Yom SK, Randazzo J, Chapman PB, Huryn JM, et al. Osteonecrosis of the jaw a new complication related to Ipilimumab. Oral Oncol. 2015;51(12):e100–1.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Naidoo J, Schindler K, Querfeld C, Busam K, Cunningham J, Page DB, et al. Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res. 2016;4(5):383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Jour G, Glitza IC, Ellis RM, Torres-Cabala CA, Tetzlaff MT, Li JY, et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions. J Cutan Pathol. 2016;43(8):688–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Zumelzu C, Alexandre M, Le Roux C, Weber P, Guyot A, Levy A, et al. Mucous membrane pemphigoid, bullous pemphigoid, and anti-programmed death-1/programmed death-ligand 1: a case report of an elderly woman with mucous membrane pemphigoid developing after pembrolizumab therapy for metastatic melanoma and review of the literature. Front Med (Lausanne). 2018;5:268.CrossRefGoogle Scholar
  19. 19.
    Schaberg KB, Novoa RA, Wakelee HA, Kim J, Cheung C, Srinivas S, et al. Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy. J Cutan Pathol. 2016;43(4):339–46.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Seaman BJ, Guardiani EA, Brewer CC, Zalewski CK, King KA, Rudy S, et al. Audiovestibular dysfunction associated with adoptive cell immunotherapy for melanoma. Otolaryngol Head Neck Surg. 2012;147(4):744–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Steel KP, Barkway C. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development. 1989;107(3):453–63.PubMedGoogle Scholar
  23. 23.
    Kim HJ, Gratton MA, Lee JH, Perez Flores MC, Wang W, Doyle KJ, et al. Precise toxigenic ablation of intermediate cells abolishes the “battery” of the cochlear duct. J Neurosci. 2013;33(36):14601–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wingard JC, Zhao HB. Cellular and deafness mechanisms underlying connexin mutation-induced hearing loss – a common hereditary deafness. Front Cell Neurosci. 2015;9:202.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Izumi K, Kohta T, Kimura Y, Ishida S, Takahashi T, Ishiko A, et al. Tietz syndrome: unique phenotype specific to mutations of MITF nuclear localization signal. Clin Genet. 2008;74(1):93–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Asher JH Jr, Sommer A, Morell R, Friedman TB. Missense mutation in the paired domain of PAX3 causes craniofacial-deafness-hand syndrome. Hum Mutat. 1996;7(1):30–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Drozniewska M, Haus O. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss. Mol Cytogenet. 2014;7:30.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391–406.PubMedCrossRefGoogle Scholar
  29. 29.
    Chaoui A, Watanabe Y, Touraine R, Baral V, Goossens M, Pingault V, et al. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum Mutat. 2011;32(12):1436–49.PubMedCrossRefGoogle Scholar
  30. 30.
    Greco A, Fusconi M, Gallo A, Turchetta R, Marinelli C, Macri GF, et al. Vogt-Koyanagi-Harada syndrome. Autoimmun Rev. 2013;12(11):1033–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Spielbauer K, Cunningham L, Schmitt N. PD-1 inhibition minimally affects cisplatin-induced toxicities in a murine model. Otolaryngol Head Neck Surg. 2018;159(2):343–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zibelman M, Pollak N, Olszanski AJ. Autoimmune inner ear disease in a melanoma patient treated with pembrolizumab. J Immunother Cancer. 2016;4:8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Diamantopoulos PT, Stoungioti S, Anastasopoulou A, Papaxoinis G, Gogas H. Incomplete Vogt-Koyanagi-Harada disease following treatment with encorafenib and binimetinib for metastatic melanoma. Melanoma Res. 2018;28(6):648–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Tampio A DS, Sivapiragasam A, Nicholas B. Bilateral sensorineural hearing loss and panuveitis in a man with stage IV malignant melanoma after nivolumab immunotherapy. Poster presentation presented at the: Combined Otolaryngology Spring Meetings 2019; May 3, 2019; Austin, TX. https://www.researchposterscom/display_postersaspx?code=cosm2019.
  35. 35.
    Basti S. Ocular toxicities of epidermal growth factor receptor inhibitors and their management. Cancer Nurs. 2007;30(4 Suppl 1):S10–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Dalvin LA, Shields CL, Orloff M, Sato T, Shields JA. Checkpoint inhibitor immune therapy: systemic indications and ophthalmic side effects. Retina (Philadelphia, PA). 2018;38(6):1063–78.CrossRefGoogle Scholar
  37. 37.
    Fu C, Gombos DS, Lee J, George GC, Hess K, Whyte A, et al. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions. Oncotarget. 2017;8(35):58709–27.PubMedPubMedCentralGoogle Scholar
  38. 38.
    National Cancer Institute (U.S.) Bethesda, MD: U.S. Department of Health and Human Services, National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE). 2009.Google Scholar
  39. 39.
    Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Draganova D, Kerger J, Caspers L, Willermain F. Severe bilateral panuveitis during melanoma treatment by Dabrafenib and Trametinib. J Ophthal Inflamm Infect. 2015;5:17.CrossRefGoogle Scholar
  41. 41.
    Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer. 2006;6(10):803–12.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol. 2004;22(16):3238–47.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Abdel-Rahman O, Oweira H, Petrausch U, Helbling D, Schmidt J, Mannhart M, et al. Immune-related ocular toxicities in solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Anticancer Ther. 2017;17(4):387–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Robert CSJ, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Eltobgy M, Oweira H, Petrausch U, Helbling D, Schmidt J, Mehrabi A, et al. Immune-related neurological toxicities among solid tumor patients treated with immune checkpoint inhibitors: a systematic review. Expert Rev Neurother. 2017;17(7):725–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Antoun J, Titah C, Cochereau I. Ocular and orbital side-effects of checkpoint inhibitors: a review article. Curr Opin Oncol. 2016;28(4):288–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Papavasileiou E, Prasad S, Freitag SK, Sobrin L, Lobo AM. Ipilimumab-induced ocular and orbital inflammation – a case series and review of the literature. Ocul Immunol Inflamm. 2016;24(2):140–6.PubMedGoogle Scholar
  49. 49.
    Bitton K. Prevalence and clinical patterns of ocular complications associated with anti-PD-1/PD-L1 anticancer immunotherapy. Am J Ophthalmol. 2019.Google Scholar
  50. 50.
    Fang T, Maberley DA, Etminan M. Ocular adverse events with immune checkpoint inhibitors. J Curr Ophthalmol. 2019;31(3):319–22.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2018;36(17):1714–68.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline summary. J Oncol Pract. 2018;14(4):247–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Horvat TZ, Adel NG, Dang TO, Momtaz P, Postow MA, Callahan MK, et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with Ipilimumab at memorial Sloan Kettering Cancer center. J Clin Oncol. 2015;33(28):3193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu Y, Liu ZG. [Role of epidermal growth factor and its receptor family in ocular surface wound healing]. [Zhonghua yan ke za zhi]. Chinese J Ophthalmol. 2007;43(10):953–6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Akanksha Srivastava
    • 1
  • Nagham Al-Zubidi
    • 1
  • Eric Appelbaum
    • 1
  • Dan S. Gombos
    • 1
  • Marc-Elie Nader
    • 1
  • Paul W. Gidley
    • 1
  • Mark S. Chambers
    • 1
    Email author
  1. 1.Department of Head and Neck Surgery, Division of SurgeryUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations