Advertisement

Matching of EM Map Segments to Structurally-Relevant Bio-molecular Regions

  • Manuel Zumbado-Corrales
  • Luis Castillo-Valverde
  • José Salas-Bonilla
  • Julio Víquez-Murillo
  • Daisuke Kihara
  • Juan Esquivel-RodríguezEmail author
Conference paper
  • 26 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1087)

Abstract

Electron microscopy is a technique used to determine the structure of bio-molecular machines via three-dimensional images (called maps). The state-of-the-art is able to determine structures at resolutions that allow us to identify up to secondary structural features, in some cases, but it is not widespread. Furthermore, because molecular interactions often require atomic-level details to be understood, it is still necessary to complement current maps with techniques that provide finer-grain structural details. We applied segmentation techniques to maps in the Electron Microscopy Data Bank (EMDB), the standard community repository for these data. We assessed the potential of these algorithms to match functionally relevant regions in their atomic-resolution image counterparts by comparing against three protein systems, each with multiple atomic-detailed domains. We found that at least 80% of amino acid residues in 7 out of 12 domains were assigned to single segments, suggesting there is potential to match the lower resolution segmented regions to the atomic counterparts. We also qualitatively analyzed the potential on other EMDB structures, as well as generating the raw segmentation information for the complete EMDB, for interested researchers to use. Results can be accessed online and the library developed is provided as part of an open-source project.

Keywords

Computational biology Computational protein structures Electron microscopy 3DEM Segmentation 

Notes

Acknowledgements

Funded by the Vicerrrectoría de Investigación y Extensión at Instituto Tecnológico de Costa Rica.

References

  1. 1.
    Ahmed, A., Whitford, P.C., Sanbonmatsu, K.Y., Tama, F.: Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. J. Struct. Biol. 177(2), 561–570 (2012).  https://doi.org/10.1016/j.jsb.2011.10.002CrossRefGoogle Scholar
  2. 2.
    Baker, M.L., Baker, M.R., Hryc, C.F., Ju, T., Chiu, W.: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97(9), 655–668 (2012).  https://doi.org/10.1002/bip.22065CrossRefGoogle Scholar
  3. 3.
    Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007).  https://doi.org/10.1016/j.str.2006.11.008CrossRefGoogle Scholar
  4. 4.
    Baker, M.L., Yu, Z., Chiu, W., Bajaj, C.: Automated segmentation of molecular subunits in electron cryomicroscopy density maps. J. Struct. Biol. 156(3), 432–441 (2006).  https://doi.org/10.1016/j.jsb.2006.05.013CrossRefGoogle Scholar
  5. 5.
    Beck, F., et al.: Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 109(37), 14870–14875 (2012).  https://doi.org/10.1073/pnas.1213333109CrossRefGoogle Scholar
  6. 6.
    Beck, M., et al.: Exploring the spatial and temporal organization of a cell’s proteome. J. Struct. Biol. 173(3), 483–496 (2011).  https://doi.org/10.1016/j.jsb.2010.11.011CrossRefGoogle Scholar
  7. 7.
    Burley, S.K., et al.: Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47(D1), D520–D528 (2019).  https://doi.org/10.1093/nar/gky949CrossRefGoogle Scholar
  8. 8.
    Dou, H., Burrows, D.W., Baker, M.L., Ju, T.: Flexible fitting of atomic models into cryo-EM density maps guided by helix correspondences. Biophys. J. 112(12), 2479–2493 (2017).  https://doi.org/10.1016/j.bpj.2017.04.054CrossRefGoogle Scholar
  9. 9.
    Esquivel-Rodríguez, J., Xiong, Y., Han, X., Guang, S., Christoffer, C., Kihara, D.: Navigating 3D electron microscopy maps with EM-SURFER. BMC Bioinform. 16, 181 (2015).  https://doi.org/10.1186/s12859-015-0580-6CrossRefGoogle Scholar
  10. 10.
    Fabiola, F., Chapman, M.S.: Fitting of high-resolution structures into electron microscopy reconstruction images. Structure 13(3), 389–400 (2005).  https://doi.org/10.1016/j.str.2005.01.007CrossRefGoogle Scholar
  11. 11.
    Hryc, C.F., et al.: Accurate model annotation of a near-atomic resolution cryo-EM map. Proc. Natl. Acad. Sci. 114(12), 3103–3108 (2017).  https://doi.org/10.1073/PNAS.1621152114CrossRefGoogle Scholar
  12. 12.
    Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308(5), 1033–1044 (2001).  https://doi.org/10.1006/jmbi.2001.4633CrossRefGoogle Scholar
  13. 13.
    Kong, Y., Ma, J.: A structural-informatics approach for mining beta-sheets: locating sheets in intermediate-resolution density maps. J. Mol. Biol. 332(2), 399–413 (2003)CrossRefGoogle Scholar
  14. 14.
    Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A structural-informatics approach for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. J. Mol. Biol. 339(1), 117–130 (2004).  https://doi.org/10.1016/j.jmb.2004.03.038CrossRefGoogle Scholar
  15. 15.
    Kostyuchenko, V.A., et al.: Three-dimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10(9), 688–693 (2003).  https://doi.org/10.1038/nsb970CrossRefGoogle Scholar
  16. 16.
    Lawson, C.L., et al.: EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44(D1), D396–D403 (2016).  https://doi.org/10.1093/nar/gkv1126CrossRefGoogle Scholar
  17. 17.
    Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph.Tools 8(2), 1–15 (2003).  https://doi.org/10.1080/10867651.2003.10487582CrossRefGoogle Scholar
  18. 18.
    Lindert, S., Stewart, P.L., Meiler, J.: Hybrid approaches: applying computational methods in cryo-electron microscopy. Curr. Opin. Struct. Biol. 19(2), 218–225 (2009).  https://doi.org/10.1016/j.sbi.2009.02.010CrossRefGoogle Scholar
  19. 19.
    Ludtke, S.J., Chen, D.H., Song, J.L., Chuang, D.T., Chiu, W.: Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12(7), 1129–1136 (2004).  https://doi.org/10.1016/j.str.2004.05.006CrossRefGoogle Scholar
  20. 20.
    Mitra, K., et al.: Structure of the E. Coli protein-conducting channel bound to a translating ribosome. Nature 438(7066), 318–324 (2005).  https://doi.org/10.1038/nature04133CrossRefGoogle Scholar
  21. 21.
    Patwardhan, A., et al.: Building bridges between cellular and molecular structural biology. eLife 6 (2017).  https://doi.org/10.7554/eLife.25835
  22. 22.
    Pintilie, G.D., Zhang, J., Goddard, T.D., Chiu, W., Gossard, D.C.: Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J. Struct. Biol. 170(3), 427–438 (2010).  https://doi.org/10.1016/j.jsb.2010.03.007CrossRefGoogle Scholar
  23. 23.
    Raschka, S.: BioPandas: working with molecular structures in pandas dataframes. J. Open Source Softw. 2(14) (2017).  https://doi.org/10.21105/joss.00279
  24. 24.
    Roh, S.H., et al.: The 3.5-Å CryoEM structure of nanodisc-reconstituted yeast vacuolar ATPase Vo proton channel. Mol. Cell 69(6), 993.e3–1004.e3 (2018).  https://doi.org/10.1016/j.molcel.2018.02.006CrossRefGoogle Scholar
  25. 25.
    Rougier, N.P.: Glumpy. In: EuroScipy (2015)Google Scholar
  26. 26.
    Terashi, G., Kihara, D.: De novo main-chain modeling with MAINMAST in 2015/2016 EM model challenge. J. Struct. Biol. 204(2), 351–359 (2018).  https://doi.org/10.1016/J.JSB.2018.07.013CrossRefGoogle Scholar
  27. 27.
    Terwilliger, T.C., Adams, P.D., Afonine, P.V., Sobolev, O.V.: A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15(11), 905–908 (2018).  https://doi.org/10.1038/s41592-018-0173-1CrossRefGoogle Scholar
  28. 28.
    Topf, M., Baker, M.L., John, B., Chiu, W., Sali, A.: Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J. Struct. Biol. 149(2), 191–203 (2005).  https://doi.org/10.1016/j.jsb.2004.11.004CrossRefGoogle Scholar
  29. 29.
    Unverdorben, P., et al.: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc. Natl. Acad. Sci. U.S.A. 111(15), 5544–5549 (2014).  https://doi.org/10.1073/pnas.1403409111CrossRefGoogle Scholar
  30. 30.
    van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011).  https://doi.org/10.1109/MCSE.2011.37CrossRefGoogle Scholar
  31. 31.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991).  https://doi.org/10.1109/34.87344CrossRefGoogle Scholar
  32. 32.
    Volkmann, N., Hanein, D., Ouyang, G., Trybus, K.M., DeRosier, D.J., Lowey, S.: Evidence for cleft closure in actomyosin upon ADP release. Nat. Struct. Biol. 7(12), 1147–1155 (2000).  https://doi.org/10.1038/82008CrossRefGoogle Scholar
  33. 33.
    Volkmann, N.: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138(1–2), 123–129 (2002).  https://doi.org/10.1016/S1047-8477(02)00009-6CrossRefGoogle Scholar
  34. 34.
    Van der Walt, S., et al.: Scikit-image: image processing in python. PeerJ 2, e453 (2014)CrossRefGoogle Scholar
  35. 35.
    Witkin, A.P.: Scale-space filtering. In: Readings in Computer Vision, pp. 329–332. Elsevier (1987).  https://doi.org/10.1016/B978-0-08-051581-6.50036-2. https://linkinghub.elsevier.com/retrieve/pii/B9780080515816500362

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manuel Zumbado-Corrales
    • 1
    • 2
  • Luis Castillo-Valverde
    • 1
  • José Salas-Bonilla
    • 1
  • Julio Víquez-Murillo
    • 1
  • Daisuke Kihara
    • 3
  • Juan Esquivel-Rodríguez
    • 1
    Email author
  1. 1.Instituto Tecnológico de Costa Rica, Escuela de ComputaciónCartagoCosta Rica
  2. 2.Advanced Computing LaboratoryNational High Technology CenterSan JoséCosta Rica
  3. 3.Department of Biological Sciences/Department of Computer SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations