Advertisement

BS-SOLCTRA: Towards a Parallel Magnetic Plasma Confinement Simulation Framework for Modular Stellarator Devices

  • Diego JiménezEmail author
  • Luis Campos-Duarte
  • Ricardo Solano-Piedra
  • Luis Alonso Araya-Solano
  • Esteban Meneses
  • Iván Vargas
Conference paper
  • 21 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1087)

Abstract

Hand in hand, computer simulations and High Performance Computing are catalyzing advances in experimental and theoretical fusion physics and the design and construction of new confinement devices that are spearheading the quest for alternative energy sources. This paper presents the Biot-Savart Solver for Computing and Tracing Magnetic Field Lines (BS-SOLCTRA), a field line tracing code developed during the first Stellarator of Costa Rica (SCR-1) campaign. We present the process towards turning BS-SOLCTRA into a full parallel simulation framework for stellarator devices. Message passing, shared-memory programming, and vectorization form the underlying parallel infrastructure and provide scalable execution. The implemented parallel simulator led to a 1, 550X speedup when compared to the original sequential version. We also present the new powerful scientific visualization capabilities added to the BS-SOLCTRA framework.

Keywords

Plasma fusion Simulation High Performance Computing Parallelism Stellarator Message Passing Interface (MPI) Open Multi-processing (OpenMP) Vectorization 

Notes

Acknowledgments

This research was partially supported by a machine allocation on Kabré supercomputer at the Costa Rica National High Technology Center.

References

  1. 1.
    Ahrens, J., Geveci, B., Law, C.: ParaView: An End-user Tool for Large Data Visualization. Visualization Handbook. Elsevier, Amsterdam (2005)Google Scholar
  2. 2.
    Bozhenkov, S.A., Geiger, J., Grahl, M., Kisslinger, J., Werner, A., Wolf, R.C.: Service oriented architecture for scientific analysis at w7–X. an example of a field line tracer. Fusion Eng. Des. 88(11), 2997–3006 (2013)CrossRefGoogle Scholar
  3. 3.
    Chavarría-Ledezma, L.D.: Parallelization of plasma physics simulations on massively parallel architectures. Unpublished master’s thesis, Costa Rica Institute of Technology, School of Computing, Cartago, Costa Rica (2017)Google Scholar
  4. 4.
    Crotinger, J.A., LoDestro, L., Pearlstein, L.D., Tarditi, A., Casper, T., Hooper, E.B.: Corsica: a comprehensive simulation of toroidal magnetic-fusion devices. final report to the LDRD program. Technical report, Lawrence Livermore National Laboratory, CA (United States) (1997)Google Scholar
  5. 5.
    Freidberg, J.P.: Plasma Physics and Fusion Energy. Cambridge University Press, Cambridge (2008)Google Scholar
  6. 6.
    Hanson, J.D., Hirshman, S.P.: Compact expressions for the Biot-Savart fields of a filamentary segment. Phys. Plasmas 9(10), 4410–4412 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hirshman, S., Betancourt, O.: Preconditioned descent algorithm for rapid calculations of magnetohydrodynamic equilibria. J. Comput. Phys. 96(1), 99–109 (1991)CrossRefGoogle Scholar
  8. 8.
    Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition. Morgan Kaufmann, Burlington (2016)Google Scholar
  9. 9.
    van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP–The Next Step: Affinity, Accelerators, Tasking, and SIMD. Scientific and Engineering Computation. MIT Press, Cambridge (2017)Google Scholar
  10. 10.
    Romero, L.F., Ortigosa, E.M., Zapata, E.L., Jiménez, J.A.: Parallelization strategies for the VMEC program. In: Kågström, B., Dongarra, J., Elmroth, E., Waśniewski, J. (eds.) PARA 1998. LNCS, vol. 1541, pp. 483–490. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0095372CrossRefGoogle Scholar
  11. 11.
    Solano-Piedra, R., et al.: Overview of the SCR-1 stellarator, March 2017. https://nucleus.iaea.org/sites/fusionportal/Shared Documents/RUSFD 23th/Pres/31.03/Solano-Piedra.pdf
  12. 12.
    Vargas, V., et al.: Implementation of stellarator of Costa Rica 1 SCR-1. In: 2015 IEEE 26th Symposium on Fusion Engineering (SOFE), pp. 1–6. IEEE (2015)Google Scholar
  13. 13.
    Wakatani, M.: Stellarator and Heliotron Devices. Oxford University Press, Oxford (1998)Google Scholar
  14. 14.
    Wang, W., et al.: Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments. Phys. Plasmas 13(9), 092505 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhu, C., Hudson, S.R., Song, Y., Wan, Y.: New method to design stellarator coils without the winding surface. Nucl. Fusion 58(1), 016008 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Diego Jiménez
    • 1
    Email author
  • Luis Campos-Duarte
    • 1
    • 2
  • Ricardo Solano-Piedra
    • 3
  • Luis Alonso Araya-Solano
    • 3
  • Esteban Meneses
    • 1
    • 2
  • Iván Vargas
    • 3
  1. 1.Advanced Computing LaboratoryCosta Rica National High Technology CenterSan JoséCosta Rica
  2. 2.School of ComputingCosta Rica Institute of TechnologyCartagoCosta Rica
  3. 3.Plasma Laboratory for Fusion Energy and ApplicationsCosta Rica Institute of TechnologyCartagoCosta Rica

Personalised recommendations