Evolutionary Approach for Bus Synchronization

  • Sergio NesmachnowEmail author
  • Jonathan MurañaEmail author
  • Gerardo Goñi
  • Renzo Massobrio
  • Andrei Tchernykh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1087)


This article presents the application of evolutionary algorithms to solve the bus synchronization problem. The problem model includes extended synchronization points, accounting for every pair of bus stops in a city, and the transfer demands for each pair of lines on each pair of bus stops. A specific evolutionary algorithm is proposed to efficiently solve the problem and results are compared with intuitive algorithms and also with the current planning of the transportation system on real scenarios from the city of Montevideo, Uruguay. Experimental results indicate that the proposed evolutionary algorithm is able to improve in up to 13.33% the synchronizations with respect to the current planning and systematically outperforms other baseline methods.


  1. 1.
    Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  2. 2.
    Ceder, A., Golany, B., Tal, O.: Creating bus timetables with maximal synchronization. Transp. Res. Part A: Policy Pract. 35(10), 913–928 (2001)Google Scholar
  3. 3.
    Ceder, A., Tal, O.: Timetable synchronization for buses. In: Wilson, N.H.M. (ed.) Computer-Aided Transit Scheduling. LNE, pp. 245–258. Springer, Heidelberg (1999).
  4. 4.
    Ceder, A., Wilson, N.: Bus network design. Transp. Res. Part B: Methodol. 20(4), 331–344 (1986)CrossRefGoogle Scholar
  5. 5.
    Daduna, J., Voß, S.: Practical experiences in schedule synchronization. In: Daduna, J.R., Branco, I., Paixão, J.M.P. (eds.) Computer-Aided Transit Scheduling. LNE, vol. 430, pp. 39–55. Springer, Heidelberg (1995). Scholar
  6. 6.
    Fleurent, C., Lessard, R., Séguin, L.: Transit timetable synchronization: evaluation and optimization. In: 9th International Conference on Computer-aided Scheduling of Public Transport (2004)Google Scholar
  7. 7.
    Grava, S.: Urban Transportation Systems: Choices for Communities. McGraw-Hill (2002)Google Scholar
  8. 8.
    Ibarra-Rojas, O., López-Irarragorri, F., Rios-Solis, Y.: Multiperiod bus timetabling. Transp. Sci. 50(3), 805–822 (2016)CrossRefGoogle Scholar
  9. 9.
    Ibarra-Rojas, O., Rios-Solis, Y.: Synchronization of bus timetabling. Transp. Res. Part B: Methodol. 46(5), 599–614 (2012)CrossRefGoogle Scholar
  10. 10.
    Intendencia de Montevideo: Plan de movilidad urbana: hacia un sistema de movilidad accesible, democrático y eficiente, April 2019.
  11. 11.
    Massobrio, R.: Urban mobility data analysis in Montevideo, Uruguay. Master’s thesis, Universidad de la República, Uruguay (2018)Google Scholar
  12. 12.
    Nesmachnow, S.: Computación científica de alto desempeño en la Facultad de Ingeniería, Universidad de la República. Revista de la Asociación de Ingenieros del Uruguay 61(1), 12–15 (2010)Google Scholar
  13. 13.
    Nesmachnow, S.: An overview of metaheuristics: accurate and efficient methods for optimisation. Int. J. Metaheuristics 3(4), 320–347 (2014)CrossRefGoogle Scholar
  14. 14.
    Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay. EAI Endorsed Trans. Smart Cities 2(5), 1–18 (2017)CrossRefGoogle Scholar
  15. 15.
    Nesmachnow, S., Tchernykh, A., Cristóbal, A.: Planificación de transporte urbano en ciudades inteligentes. In: I Ibero-american Conference on Smart Cities, pp. 204–218 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay
  2. 2.Centro de Investigación Científica y Educacion Superior de EnsenadaEnsenadaMexico

Personalised recommendations