Towards a Platform to Evaluate the Impact of Resource Information Distribution in IoT Environments

  • Paula Verghelet
  • Esteban MocskosEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1087)


Internet of Things (IoT) is a paradigm in which every object has the capacity of communicating through the Internet. Cloud Computing is designed to provide computational resources to costumers geographically distributed following an elastic payment strategy. Fog/Edge Computing aims to decrease bandwidth usage keeping the computation near the source of data and avoiding the collapse of network infrastructure when moving all the data from the edge to the cloud data centers. Fog and Cloud environments define a large scale distributed system composed of heterogeneous resources, which has huge theoretical computing power. But using these computational resources poses challenges to distributed applications and scheduling policies. In this work, we show the initial steps to develop a tool to support evaluate the impact of resource information quality to guide scheduling policies. This tool combines simulation and validation and simplifies the deployment of experiments on both sides. The evaluation of this initial proof of concept consists of the deployment of experiments with a different number of devices in a single site and in three different sites across France. Our results show that both simulation and validation platforms present good agreement.


Resource information Internet of Things Validation 



This work is partially supported by Universidad de Buenos Aires (UBACyT 20020170100765BA), Consejo Nacional de Investigaciones Científicas y Técnicas (PIO13320150100020CO), and Agencia Nacional de Promoción de Ciencia y Técnica (PICT-2015-2761). We thank the access to FIT IoT-LAB infrastructure and their support while performing the experiments.


  1. 1.
    Aazam, M., Huh, E.N.: Fog computing: the cloud-IoT/IoE middleware paradigm. IEEE Potentials 35(3), 40–44 (2016)CrossRefGoogle Scholar
  2. 2.
    Adjih, C., et al.: FIT IoT-LAB: a large scale open experimental IoT testbed. In: Proceedings of IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 459–464. IEEE, December 2015Google Scholar
  3. 3.
    Anglano, C., Canonico, M., Guazzone, M.: WQR-UD: an online scheduling algorithm for FemtoClouds. In: Proceedings of the 12th EAI International Conference on Performance Evaluation Methodologies and Tools, pp. 179–182. ACM, New York(2019)Google Scholar
  4. 4.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. MCC 2012, pp. 13–16. ACM, New York (2012)Google Scholar
  5. 5.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  6. 6.
    Casanova, H.: Simgrid: a toolkit for the simulation of application scheduling. In: Proceedings of the 1st International Symposium on Cluster Computing and the Grid, pp. 430–437. IEEE, Piscataway, May 2001Google Scholar
  7. 7.
    Chen, X., Junshan, Z.: When D2D meets cloud: hybrid mobile task offloadings in fog computing. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 1–6. IEEE, Piscataway, May 2017Google Scholar
  8. 8.
    Chen, Y.C., Chang, Y.C., Chen, C.H., Lin, Y.S., Chen, J.L., Chang, Y.Y.: Cloud-fog computing for information-centric Internet-of-Things applications. In: Proceedings of the International Conference on Applied System Innovation (ICASI), pp. 637–640. IEEE, Piscataway, May 2017Google Scholar
  9. 9.
    Clayman, S., Toffetti, G., Galis, A., Chapman, C.: Monitoring services in a federated cloud: the reservoir experience. In: Achieving Federated and Self-manageable Cloud Infrastructures: Theory and Practice, pp. 242–265. IGI Global, May 2012Google Scholar
  10. 10.
    Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J. Supercomput. 64(3), 835–848 (2013)CrossRefGoogle Scholar
  11. 11.
    Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017)CrossRefGoogle Scholar
  12. 12.
    Luo, J., et al.: Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Gener. Comput. Syst. 97, 50–60 (2019)CrossRefGoogle Scholar
  13. 13.
    Meshkova, E., Riihijärvi, J., Petrova, M., Mähönen, P.: A survey on resource discovery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52(11), 2097–2128 (2008)CrossRefGoogle Scholar
  14. 14.
    Mocskos, E.E., Yabo, P., Turjanski, P.G., Fernandez Slezak, D.: Grid matrix: a grid simulation tool to focus on the propagation of resource and monitoring information. Simul. Trans. Soc. Model. Simul. Int. 88(10), 1233–1246 (2012) Google Scholar
  15. 15.
    Sukhoroslov, O., Nazarenko, A., Aleksandrov, R.: An experimental study of scheduling algorithms for many-task applications. J. Supercomput. 75(12), 7857–7871 (2019). Scholar
  16. 16.
    Verghelet, P., Mocskos, E.: Improvements to super-peer policy communication mechanisms. In: Osthoff, C., Navaux, P.O.A., Barrios Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp. 73–86. Springer, Cham (2015). Scholar
  17. 17.
    Verghelet, P., Mocskos, E.: Efficient P2P inspired policy to distribute resource information in large distributed systems. In: Barrios Hernández, C.J., Gitler, I., Klapp, J. (eds.) CARLA 2016. CCIS, vol. 697, pp. 3–17. Springer, Cham (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Simulación Computacional p/Aplic. Tecnológicas/CSC-CONICETBuenos AiresArgentina

Personalised recommendations