Advertisement

The Method of Multi-criteria Parametric Optimization

  • Igor KorobiichukEmail author
  • Volodymyr Drevetsky
  • Lyudmyla Kuzmych
  • Ivan Kovela
Conference paper
  • 59 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1140)

Abstract

The theoretical bases of the method of multi-criteria parametric optimization are developed, algorithms of calculation of continuous systems with typical linear regulators are given. Algorithms of the calculation of systems with digital controllers are given and shown on the example of the calculation of system with digital PI- regulator and objects with self-alignment and delay at a given value of the period of discreteness.

Keywords

Multi-criteria parametric optimization Automatic control system Proportional integrable differentiating regulator Amplitude-frequency characteristic 

References

  1. 1.
    Åström, K.J., Hägglund, T.: Avanced PID Control. ISA-The Instrumentation, Systems and Automation Society (2006). 460 p.Google Scholar
  2. 2.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009). 599 p.CrossRefGoogle Scholar
  3. 3.
    Korobiichuk, I., Ladanyuk, A., Shumyhai, D., Boyko, R., Reshetiuk, V., Kamiński, M.: How to increase efficiency of automatic control of complex plants by development and implementation of coordination control system. In: Recent Advances in Systems, Control and Information Technology. Advances in Intelligent Systems and Computing, vol. 543, pp. 189–195 (2017).  https://doi.org/10.1007/978-3-319-48923-0_23Google Scholar
  4. 4.
    Zurawski, R.: Integration Technologies for Industrial Automated Systems. Industrial information technology Series. CRC Press, Taylor & Francis Group, Boca Raton (2007). 539 p.Google Scholar
  5. 5.
    Johnson, M.A., Moradi, M.H.: PID Control. New Identification and Design Methods. Springer, London (2005). 543 p.CrossRefGoogle Scholar
  6. 6.
    Masum Jujuli, M.: Analytical Design of PID Controller for Enhanced Disturbance Rejection of Processes without Time Delay. Graduate School of Yeungnam University (2010)Google Scholar
  7. 7.
    Korobiichuk, I., Siumachenko, D., Smityuh, Y., Shumyhai, D.: Research on automatic controllers for plants with significant delay. In: Advances in Intelligent Systems and Computing, vol. 519, pp. 449–457 (2017)  https://doi.org/10.1007/978-3-319-46490-9_60Google Scholar
  8. 8.
    Åström, K.J., Hägglund, T.: PID Controllers, Theory, Design and Tuning, 2nd edn. Instrument Society of America, Research Triangle (1995)Google Scholar
  9. 9.
    Ho, W.K., Lim, K.W., Xu, W.: Optimal gain and phase margin tuning for PID controllers. Automatica 34(8), 1009–1014 (1998)CrossRefGoogle Scholar
  10. 10.
    Kuzmych, L., Kobylianskyi, O., Duk, M.: Current state of tools and methods of control of deformations and mechanical stresses of complex technical systems. In: Proceedings of SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, p. 108085J (2018).  https://doi.org/10.1117/12.2501661
  11. 11.
    Kuzmych, L., Kvasnikov, V.: Study of the durability of reinforced concrete structures of engineering buildings. In: Advances in Intelligent Systems and Computing, vol. 543, pp. 659–663 (2017)Google Scholar
  12. 12.
    Korobiichuk, I., Lobok, A., Goncharenko, B., Savitska, N., Sych, M., Vihrova, L.: The problem of the optimal strategy of minimax control by objects with distributed parameters. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2019. AUTOMATION 2019. Advances in Intelligent Systems and Computing, vol. 920, pp. 77–85. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-13273-6_8Google Scholar
  13. 13.
    Babich, V., Dovbenko, V., Kuzmych, L., Dovbenko, T.: Estimation of flexures of the reinforced concrete elements according to the National Ukrainian & European standards. In: MATEC Web of Conferences, vol. 116, Article 02005 (2017)Google Scholar
  14. 14.
    Dyakonov, V.P.: Maple – 7. SPB, Petersburg (2002). 672 p. (in Russian)Google Scholar
  15. 15.
    Krasovskiy, A.A.: Handbook of the Theory of Automatic Control. Nauka, Moskva (1987). 712 p. (in Russian)Google Scholar
  16. 16.
    Shavrov, A.V., Soldatov, V.V.: Multi-criteria management under conditions of static uncertainty. Mashinostroenie, Moskva (1990). 160 p. (in Russian)Google Scholar
  17. 17.
    Korobiichuk, I., Ladaniuk A., Ivashchuk V.: Features of control for multi-assortment technological process. In: Szewczyk, R., Krejsa, J., Nowicki, M., Ostaszewska-Liżewska, A. (eds.) Mechatronics 2019: Recent Advances Towards Industry 4.0. MECHATRONICS 2019. Advances in Intelligent Systems and Computing, vol. 1044, pp. 214–221. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-29993-4_27Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Igor Korobiichuk
    • 1
    Email author
  • Volodymyr Drevetsky
    • 2
  • Lyudmyla Kuzmych
    • 3
  • Ivan Kovela
    • 4
  1. 1.ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAPWarsawPoland
  2. 2.National University of Water and Environmental EngineeringRivneUkraine
  3. 3.National Aviation UniversityKyivUkraine
  4. 4.Lviv Polytechnic National UniversityLvivUkraine

Personalised recommendations