The Use of Facial Expressions Identified from the Level of the EEG Signal for Controlling a Mobile Vehicle Based on a State Machine

  • Szczepan PaszkielEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1140)


The development of brain-computer technology resulted in affordable Brain-Computer Interface peripherals. The purpose of the article is to choose BCI device and the way of passing commands to remote vehicle. Next part of the work is preparation of physical device, which can be controlled through Wi-Fi from Personal Computer. The vehicle is expected to make movements like forward, backward and rotation. Finally, the whole process will be orchestrated by software on PC, which passes commands from BCI device to the vehicle. Thus the robot is controlled with facial expressions, intercepted by BCI device.


Control Mobile robot Facial expressions Brain-computer interfaces 


  1. 1.
    Beck, K.: Test Driven Development: By Example. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)Google Scholar
  2. 2.
    Ebrahimi, T., Vesin, J.M., Garcia, G.: Brain-computer interface in multimedia communication. IEEE Signal Process. Mag. 20(1), 14–24 (2003)CrossRefGoogle Scholar
  3. 3.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)zbMATHGoogle Scholar
  4. 4.
    Libenson, M.H.: Practical Approach to Electroencephalography. Elsevier Health Sciences, Philadelphia (2012)Google Scholar
  5. 5.
    Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. Prentice Hall PTR, Upper Saddle River (2003)Google Scholar
  6. 6.
    Paszkiel, S., Błachowicz, A.: Zastosowanie BCI do sterowania robotem mobilnym. Pomiary Automatyka Robotyka 16(182), 270–274 (2012)Google Scholar
  7. 7.
    Pilone, D.: UML 2.0 Pocket Reference. O’Reilly Media Inc, Sebastopol (2006)Google Scholar
  8. 8.
    Troelsen, A., Japikse, P.: C# 6.0 and the.NET 4.6 Framework, 7th edn. Apress, Berkely (2015)CrossRefGoogle Scholar
  9. 9.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  10. 10.
    Ghaemia, A., Rashedia, E., Mohammad Pourrahimib, A., Kamandara, M., Rahdaric, F.: Automatic channel selection in EEG signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm. Biomed. Signal Process. Control 33, 109–118 (2017). Scholar
  11. 11.
    Wei-Yen, H.: Brain-computer interface connected to telemedicine and telecommunication in virtual reality applications. Telematics Inform. 34(4), 224–238 (2017). Scholar
  12. 12.
    Mathewson, K.E., Lleras, A., Beck, D.M., Fabiani, M., Ro, T., Gratton, G.: Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front. Psychol. (2011). Scholar
  13. 13.
    Paszkiel, Sz.: Facial expressions as an artifact in EEG signal used in the process of controlling a mobile robot with LabVIEW. Electr. Rev. 2017(4), 156–160 (2017). Scholar
  14. 14.
    Paszkiel, Sz.: Using the raspberry PI2 module and the brain-computer technology for controlling a mobile vehicle. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2019, Progress in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, pp. 356–366. Springer, Switzerland (2020). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Automatic Control and Informatics, Department of Biomedical EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations