Network-Based Approach for Modeling and Analyzing Coronary Angiography

  • Babak RavandiEmail author
  • Arash Ravandi
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Significant intra-observer and inter-observer variability in the interpretation of coronary angiograms are reported. This variability is in part due to the common practices that rely on performing visual inspections by specialists (e.g., the thickness of coronaries). Quantitative Coronary Angiography (QCA) approaches are emerging to minimize observer’s error and furthermore perform predictions and analysis on angiography images. However, QCA approaches suffer from the same problem as they mainly rely on performing visual inspections by utilizing image processing techniques. In this work, we propose an approach to model and analyze the entire cardiovascular tree as a complex network derived from coronary angiography images. This approach enables to analyze the graph structure of coronary arteries. We conduct the assessments of network integration, degree distribution, and controllability on a healthy and a diseased coronary angiogram. Through our discussion and assessments, we propose modeling the cardiovascular system as a complex network is an essential phase to fully automate the interpretation of coronary angiographic images. We show how network science can provide a new perspective to look at coronary angiograms.


Complex networks Coronary heart disease Angiography Quantitative coronary angiography Coronary network Complex systems 



The authors acknowledge Professor Joaquín Goñi, School of Industrial Engineering at Purdue University, West Lafayette, USA and Dr. Sophoclis Sophocleous, Pulmonology Resident in Bethanien Hospital, Solingen, Germany for their help and guidance on this paper. We like to thank Mr. Javad Darivandpour, Ph.D. candidate in the Department of Computer Science at Purdue University, West Lafayette, USA for his constructive criticism of the manuscript. We would also like to show our gratitude to Dr. Saied Ravandi for his pearls of wisdom with us during the course of this research.


  1. 1.
  2. 2.
    Andrikos, I.O., Sakellarios, A.I., Siogkas, P.K., Rigas, G., Exarchos, T.P., Athanasiou, L.S., Karanasos, A., Toutouzas, K., Tousoulis, D., Michalis, L.K., Fotiadis, D.I.: A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 588–591, July 2017Google Scholar
  3. 3.
    Andrikos, I.O., Sakellarios, A.I., Siogkas, P.K., Tsompou, P.I., Kigka, V.I., Michalis, L.K., Fotiadis, D.I.: A novel method for 3D reconstruction of coronary bifurcation using quantitative coronary angiography. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018, pp. 191–195. Springer, Singapore (2019)CrossRefGoogle Scholar
  4. 4.
    Bourantas, C.V., Kourtis, I.C., Plissiti, M.E., Fotiadis, D.I., Katsouras, C.S., Papafaklis, M.I., Michalis, L.K.: A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Comput. Med. Imaging Graph. 29(8), 597–606 (2005)CrossRefGoogle Scholar
  5. 5.
    Dashtbozorg, B., Mendonça, A.M., Campilho, A.: An automatic graph-based approach for artery/vein classification in retinal images. IEEE Trans. Image Process. 23(3), 1073–1083 (2014)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    DeRouen, T.A., Murray, J.A., Owen, W.: Variability in the analysis of coronary arteriograms. Circulation 55(2), 324–328 (1977)CrossRefGoogle Scholar
  7. 7.
    Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015)CrossRefGoogle Scholar
  8. 8.
    de Feyter, P.J., Serruys, P.W., Davies, M.J., Richardson, P., Lubsen, J., Oliver, M.F.: Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis, value, limitations, and implications for clinical trials. Circulation 84(1), 412–423 (1991)CrossRefGoogle Scholar
  9. 9.
    Fleming, R.M., Kirkeeide, R.L., Smalling, R.W., Gould, K., Stuart, Y.: Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J. Am. Coll. Cardiol. 18(4), 945–951 (1991)CrossRefGoogle Scholar
  10. 10.
    Garrone, P., Biondi-Zoccai, G., Salvetti, I., Sina, N., Sheiban, I., Stella, P.R., Agostoni, P.: Quantitative coronary angiography in the current era: principles and applications. J. Intervent. Cardiol. 22(6), 527–536 (2009)CrossRefGoogle Scholar
  11. 11.
    Goñi, J., Avena-Koenigsberger, A., Velez de Mendizabal, N., van den Heuvel, M.P., Betzel, R.F., Sporns, O.: Exploring the morphospace of communication efficiency in complex networks. PLOS ONE 8(3), 1–10 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Green, N.E., Chen, S.Y.J., Hansgen, A.R., Messenger, J.C., Groves, B.M., Carroll, J.D.: Angiographic views used for percutaneous coronary interventions: a three-dimensional analysis of physician-determined vs. computer-generated views. Cathet. Cardiovasc. Interv. 64(4), 451–459 (2005)CrossRefGoogle Scholar
  13. 13.
    Kern, M.J., Cutlip, D.: Quantitative coronary angiography: clinical applications, November 2017. Gordon M Saperia (ed.) UpToDate. Assessed Feb 2019
  14. 14.
    Kim, T.J., Kim, J.K., Park, B.M., Song, P.S., Kim, D.K., Kim, K.H., Seol, S.H., Kim, D.I.: Fatal subacute stent thrombosis induced by guidewire fracture with retained filaments in the coronary artery. Korean Circ. J. 43(11), 761–765 (2013)CrossRefGoogle Scholar
  15. 15.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Lossau, T., Nickisch, H., Wissel, T., Bippus, R., Schmitt, H., Morlock, M., Grass, M.: Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med. Image Anal. 52, 68–79 (2019)CrossRefGoogle Scholar
  18. 18.
    Lusis, A.J., Weiss, J.N.: Cardiovascular networks. Circulation 121(1), 157–170 (2010)CrossRefGoogle Scholar
  19. 19.
    Makowiec, D.: The heart pacemaker by cellular automata on complex networks. In: Cellular Automata, pp. 291–298 (2008)Google Scholar
  20. 20.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Moreno, P.R., Purushothaman, K.R., Sirol, M., Levy, A.P., Fuster, V.: Neovascularization in human atherosclerosis. Circulation 113(18), 2245–2252 (2006)CrossRefGoogle Scholar
  22. 22.
    Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Ravandi, B., Mili, F., Springer, J.A.: Identifying and using driver nodes in temporal networks. J. Complex Netw. 7, 720–748 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rosvall, M., Grönlund, A., Minnhagen, P., Sneppen, K.: Searchability of networks. Phys. Rev. E 72, 046117 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  26. 26.
    Ryan, T.J.: The coronary angiogram and its seminal contributions to cardiovascular medicine over five decades. Circulation 106(6), 752–756 (2002)CrossRefGoogle Scholar
  27. 27.
    Sneppen, K., Trusina, A., Rosvall, M.: Hide-and-seek on complex networks. Europhys. Lett. (EPL) 69(5), 853–859 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Soroushmehr, S., Bafna, A., Shashank, S., Brahmajee, N., Ward, K., Najarian, K.: Abstract 15456: computer-assisted diagnosis of coronary angiography. Circulation 132(suppl\(\_\)3), A15456–A15456 (2015)Google Scholar
  29. 29.
    Tomasello, S.D., Costanzo, L., Galassi, A.R.: Quantitative coronary angiography in the interventional cardiology. In: Kiraç, S.F. (ed.) Advances in the Diagnosis of Coronary Atherosclerosis, chap. 14. IntechOpen, Rijeka (2011)Google Scholar
  30. 30.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276(5309), 122–126 (1997)CrossRefGoogle Scholar
  31. 31.
    Wilson, P.W., Douglas, P.S.: Epidemiology of coronary heart disease, January 2018. Brian C Downey (ed.) UpToDate. Accessed Feb 2019
  32. 32.
    Wolterink, J.M., van Hamersvelt, R.W., Viergever, M.A., Leiner, T., Išgum, I.: Coronary artery centerline extraction in cardiac CT angiography using a cnn-based orientation classifier. Med. Image Anal. 51, 46–60 (2019)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Network Science Institute, Center for Complex Network ResearchNortheastern UniversityBostonUSA
  2. 2.Division of Orthopeadic RheumatologyFriedrich-Alexander University Erlangen-Nuremberg, Waldkrankenhaus ErlangenErlangenGermany

Personalised recommendations