Advertisement

There Is Always an Exception: Controlling Partial Information Leakage in Secure Computation

  • Máté HorváthEmail author
  • Levente Buttyán
  • Gábor Székely
  • Dóra Neubrandt
Conference paper
  • 18 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11975)

Abstract

Private Function Evaluation (PFE) enables two parties to jointly execute a computation such that one of them provides the input while the other chooses the function to compute. According to the traditional security requirements, a PFE protocol should leak no more information, neither about the function nor the input, than what is revealed by the output of the computation. Existing PFE protocols inherently restrict the scope of computable functions to a certain function class with given output size, thus ruling out the direct evaluation of such problematic functions as the identity map, which would entirely undermine the input privacy requirement. We observe that when not only the input x is confidential but certain partial information g(x) of it as well, standard PFE fails to provide meaningful input privacy if g and the function f to be computed fall into the same function class.

Our work investigates the question whether it is possible to achieve a reasonable level of input and function privacy simultaneously even in the above cases. We propose the notion of Controlled PFE (CPFE) with different flavours of security and answer the question affirmatively by showing simple, generic realizations of the new notions. Our main construction, based on functional encryption (FE), also enjoys strong reusability properties enabling, e.g. fast computation of the same function on different inputs. To demonstrate the applicability of our approach, we show a concrete instantiation of the FE-based protocol for inner product computation that enables secure statistical analysis (and more) under the standard Decisional Diffie–Hellman assumption.

Keywords

Cryptographic protocols Private function evaluation Functional encryption Oblivious transfer Secure data markets 

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  3. 3.
    Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptogr. Eng. 3(2), 111–128 (2013).  https://doi.org/10.1007/s13389-013-0057-3CrossRefGoogle Scholar
  4. 4.
    Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 557–587. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_19CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selective private function evaluation with applications to private statistics. In: Kshemkalyani, A.D., Shavit, N. (eds.) Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, PODC 2001, pp. 293–304. ACM (2001).  https://doi.org/10.1145/383962.384047
  7. 7.
    Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30580-4_12CrossRefGoogle Scholar
  8. 8.
    Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22nd Annual Network and Distributed System Security Symposium, NDSS 2015. The Internet Society (2015).  https://doi.org/10.14722/ndss.2015.23113
  9. 9.
    Dong, C., Chen, L.: A fast secure dot product protocol with application to privacy preserving association rule mining. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8443, pp. 606–617. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06608-0_50CrossRefGoogle Scholar
  10. 10.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 40–49. IEEE Computer Society (2013).  https://doi.org/10.1109/FOCS.2013.13
  11. 11.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_18CrossRefGoogle Scholar
  12. 12.
    Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving data mining. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496618_9CrossRefGoogle Scholar
  13. 13.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  14. 14.
    Horváth, M., Buttyán, L., Székely, G., Neubrandt, D.: There is always an exception: controlling partial information leakage in secure computation (full version). Cryptology ePrint Archive, Report 2019/1302 (2019). https://eprint.iacr.org/2019/1302
  15. 15.
    Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional circuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 499–528. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_18CrossRefGoogle Scholar
  16. 16.
    Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_27CrossRefGoogle Scholar
  17. 17.
    Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., et al. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 818–829. ACM (2016).  https://doi.org/10.1145/2976749.2978381
  18. 18.
    Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85230-8_7CrossRefzbMATHGoogle Scholar
  19. 19.
    Naveed, M., et al.: Controlled functional encryption. In: Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, 2014, pp. 1280–1291. ACM (2014).  https://doi.org/10.1145/2660267.2660291
  20. 20.
    Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-private functions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 89–106. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01957-9_6CrossRefGoogle Scholar
  21. 21.
    Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_9CrossRefGoogle Scholar
  22. 22.
    Tzeng, W.: Efficient 1-out-of-n oblivious transfer schemes with universally usable parameters. IEEE Trans. Comput. 53(2), 232–240 (2004).  https://doi.org/10.1109/TC.2004.1261831CrossRefMathSciNetGoogle Scholar
  23. 23.
    Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual ACM Symposium on Theory of Computing, pp. 196–203. ACM (1976).  https://doi.org/10.1145/800113.803649
  24. 24.
    Zhu, Y., Wang, Z., Hassan, B., Zhang, Y., Wang, J., Qian, C.: Fast secure scalar product protocol with (almost) optimal efficiency. In: Guo, S., Liao, X., Liu, F., Zhu, Y. (eds.) CollaborateCom 2015. LNICST, vol. 163, pp. 234–242. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28910-6_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Máté Horváth
    • 1
    Email author
  • Levente Buttyán
    • 1
  • Gábor Székely
    • 1
  • Dóra Neubrandt
    • 1
  1. 1.Laboratory of Cryptography and Systems Security (CrySyS), Department of Networked Systems and ServicesBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations