Advertisement

A Contextual Driven Approach to Risk Event Tagging

  • Shawn JohnsonEmail author
  • George Karabatis
Conference paper
  • 16 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11878)

Abstract

Current methods of tagging events in a particular context, when deciding which ones pose a security risk on an enterprise network are inadequate. For example, changes in an environment, such as a larger number of HIPAA violations by certain user roles, can pose a risk to specific organizational functions or cyber infrastructure. To compound the problem, different information owners typically specify different user contexts based on differing organizational or individual needs. To address this problem, we developed an approach that utilizes semantic annotations, a technique that can aid in the understanding of how an event may affect knowledge of information in a domain. In this approach, semantic annotations are used to enable the tagging of events in accordance with differing organizational goals and user preferences. This work can be used to flag possible security violations and assist in their prevention.

Keywords

Ontology Context Risk Security 

References

  1. 1.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004). 1570-8268Google Scholar
  2. 2.
    Organik Knowledge Management: Taxonomy Learning Implementing. Organik Knowledge Management, 07 August 2015. http://organik.opendfki.de/wiki/TaxonomyLearningImplementation. Accessed 07 Oct 2015
  3. 3.
    Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74255-5_42CrossRefGoogle Scholar
  4. 4.
    Ganesan, K., Zhai, C.: Opinion based entity ranking. Inf. Retr. 15, 116–150 (2011)CrossRefGoogle Scholar
  5. 5.
    Liu, Z.: Reuters 50/50 Data Set. National Engineering Research Center for E-LearningGoogle Scholar
  6. 6.
    Das, D., Martins, A.F.T.: A survey on automatic text summarization (2007)Google Scholar
  7. 7.
    Biébow, B., Szulman, S., Clément, Av.J.B.: TERMINAE: a linguistics-based tool for the building of a domain ontology. In: Fensel, D., Studer, R. (eds.) EKAW 1999. LNCS (LNAI), vol. 1621, pp. 49–66. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48775-1_4CrossRefGoogle Scholar
  8. 8.
    Nobecourt, J., Dagstuhl: A Method for Building Formal Ontologies From Texts. Springer, Germany (2002)Google Scholar
  9. 9.
    Lonsdale, D., Ding, Y., Embley, D.W., Melby, A.: Peppering knowledge sources with salt: boosting conceptual content for ontology generation. American Association for Artificial Intelligence (2002)Google Scholar
  10. 10.
    Khan, L., Luo, F.: ICTAI 2002, Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2002). IEEE Computer Society (2002)Google Scholar
  11. 11.
    Kong, H., Hwang, M., Kim, P.: Design of the automatic ontology building system about the specific domain knowledge. IEEE (2006). 89-5519-129-4Google Scholar
  12. 12.
    Moldovan, D.I., Roxana, G.: Domain-Specific Knowledge Acquisition and Classification Using Wordnet. AAAI Press (2000)Google Scholar
  13. 13.
    Kietz, J., Maedche, A., Volz, R.: A method for semi-automatic ontology acquisition from a corporation intranet. Pins, France (2000)Google Scholar
  14. 14.
    Maedche, A., Staab, S.: The text-to-onto ontology learning environment (2000)Google Scholar
  15. 15.
    Cimiano, P., Ladwig, G., Staab, S.: Gimme’ the context: context driven semantic annotation with CPANKOW. ACM, New York (2005). 1-59593-046-9Google Scholar
  16. 16.
    Dingli, A., Ciravegna, F., Wilks, Y.: Automatic semantic annotation using unsupervised information extraction and integration. ACM (2000)Google Scholar
  17. 17.
    Fabra, J., Hernández, S., Álvarez, P., Otero, E., Vidal, J.C., Lama, M.: A practical experience concerning the parallel semantic annotation of a large-scale data collection. ACM, New York (2013)Google Scholar
  18. 18.
    Dill, S., et al.: A case for automated large scale semantic annotation. J. Web Semant. 1, 115–132 (2003)CrossRefGoogle Scholar
  19. 19.
    Leung, M.-K., et al.: Scalable semantic annotation using lattice-based ontologies. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 393–407. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04425-0_31CrossRefGoogle Scholar
  20. 20.
    Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29, 394–410 (2007)CrossRefGoogle Scholar
  21. 21.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16, 467–476 (2008). 1558-7916Google Scholar
  22. 22.
    Apache Spark. http://spark.apache.org. Accessed 07 Sept 2015
  23. 23.
    Yang, C.-Y., Lin, H.-Y.: An Automated semantic annotation based-on WordNet ontology. IEEE. Seoul, South Korea (2010). 978-1-4244-7671-8Google Scholar
  24. 24.
    Erdmann, M., Maedche, A., Schnurr, H.-P., Staab, S.: From manual to semi-automatic semantic annotation: about ontology-based text annotation tools. Association For Computational Linquistics (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Information Systems DepartmentUniversity of Maryland, Baltimore County (UMBC)BaltimoreUSA

Personalised recommendations