Advertisement

Design Science as Methodological Approach to Interoperability Engineering in Digital Production

  • Christian StaryEmail author
  • Georg Weichhart
  • Claudia Kaar
Conference paper
  • 18 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11878)

Abstract

Interoperability is considered crucial for sustainable digitization of organizations. Interoperability Engineering captures organizational, semantic and technological aspects of production process components, and combines them for operation. In this paper, we present an adaptable methodological development framework stemming from Design Science. It can be used along structured value chains in digital production for aligning various production process components for operation. We demonstrate its applicability for Additive Manufacturing (AM) and its capability to settle organizational, semantic, and technological aspects in the course of a digital production. AM starts with organizational goal setting and structuring requirements for an envisioned solution, which becomes part of an AM project contract. All pre- and post-fabrication steps are framed by design science stages. Their order help structuring interoperability aspects and enable stepwise addressing them along iterative development cycles. Due its openness, the proposed framework can be adapted to various industrial settings.

Keywords

Interoperability Additive Manufacturing Design science 

Notes

Acknowledgement

This work has been supported by Pro2Future (FFG contract No. 854184). Pro2Future is funded within the COMET Program — Competence Centers for Excellent Technologies - under the auspices of the Austrian Federal Ministry of Transport, Innovation and Technology, the Austrian Federal Ministry for Digital and Economic Affairs and of the Provinces of Upper Austria and Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

References

  1. 1.
    Kalogirou, V., Charalabidis, Y.: The European union landscape on interoperability standardisation: status of European and national interoperability frameworks. In: Popplewell, K., Thoben, K.-D., Knothe, T., Poler, R. (eds.) Enterprise Interoperability VIII. PIC, vol. 9, pp. 359–368. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-13693-2_30CrossRefGoogle Scholar
  2. 2.
    McLoughlin, I., Garrety, K., Wilson, R., Yu, P., Dalley, A.: The Digitalization of Healthcare: Electronic Records and the Disruption of Moral Orders. Oxford University Press, Oxford (2017)CrossRefGoogle Scholar
  3. 3.
    Salminen, V., Ruohomaa, H., Kantola, J.: Digitalization and big data supporting responsible business co-evolution. In: Kantola, J.I., Barath, T., Nazir, S., Andre, T. (eds.) Advances in Human Factors, Business Management, Training and Education. AISC, vol. 498, pp. 1055–1067. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-42070-7_96CrossRefGoogle Scholar
  4. 4.
    Wang, T.-H., Yen, N.Y., Du, Y.-L., Shih, T.K.: Courseware authoring tool for achieving interoperability among various e-learning specifications based on web 2.0 technologies. In: 2007 International Conference on Parallel Processing Workshops (ICPPW 2007), pp. 25–25. IEEE, Xian (2007).  https://doi.org/10.1109/ICPPW.2007.32
  5. 5.
    Weichhart, G., Stary, C., Vernadat, F.: Enterprise modelling for interoperable and knowledge-based enterprises. Int. J. Prod. Res. 56, 2818–2840 (2018).  https://doi.org/10.1080/00207543.2017.1406673CrossRefGoogle Scholar
  6. 6.
    Ducq, Y., Chen, D., Doumeingts, G.: A contribution of system theory to sustainable enterprise interoperability science base. Comput. Ind. 63, 844–857 (2012).  https://doi.org/10.1016/j.compind.2012.08.005CrossRefGoogle Scholar
  7. 7.
    Naudet, Y., Latour, T., Guedria, W., Chen, D.: Towards a systemic formalisation of interoperability. Comput. Ind. 61, 176–185 (2010).  https://doi.org/10.1016/j.compind.2009.10.014CrossRefGoogle Scholar
  8. 8.
    Vernadat, F.B.: Interoperable enterprise systems: principles, concepts, and methods. Ann. Rev. Control 31, 137–145 (2007).  https://doi.org/10.1016/j.arcontrol.2007.03.004CrossRefGoogle Scholar
  9. 9.
    Agostinho, C., et al.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Comput. Ind. 79, 64–76 (2016).  https://doi.org/10.1016/j.compind.2015.07.001CrossRefGoogle Scholar
  10. 10.
    Panetto, H., Jardim-Goncalves, R., Molina, A.: Enterprise integration and networking: theory and practice. Ann. Rev. Control 36, 284–290 (2012).  https://doi.org/10.1016/j.arcontrol.2012.09.009CrossRefGoogle Scholar
  11. 11.
    Linthicum, D.S.: Enterprise Application Integration. Addison-Wesley, Reading (2000)Google Scholar
  12. 12.
    Tu, Z., Zacharewicz, G., Chen, D.: A federated approach to develop enterprise interoperability. J. Intell. Manuf. 27, 11–31 (2016).  https://doi.org/10.1007/s10845-013-0868-1CrossRefGoogle Scholar
  13. 13.
    Benaben, F., Mu, W., Boissel-Dallier, N., Barthe-Delanoe, A.-M., Zribi, S., Pingaud, H.: Supporting interoperability of collaborative networks through engineering of a service-based mediation information system (MISE 2.0). Enterp. Inf. Syst. 1–27 (2014).  https://doi.org/10.1080/17517575.2014.928949
  14. 14.
    Stary, C., Wachholder, D.: System-of-systems support—a bigraph approach to interoperability and emergent behavior. Data Knowl. Eng. 105, 155–172 (2016).  https://doi.org/10.1016/j.datak.2015.12.001CrossRefGoogle Scholar
  15. 15.
    Gorod, A., White, B.E., Ireland, V., Gandhi, S.J., Sauser, B. (eds.) Case Studies in System of Systems, Enterprise Systems, and Complex Systems Engineering. CRC Press (2014).  https://doi.org/10.1201/b17139
  16. 16.
    Weichhart, G., Guédria, W., Naudet, Y.: Supporting interoperability in complex adaptive enterprise systems: a domain specific language approach. Data Knowl. Eng. 105, 90–106 (2016).  https://doi.org/10.1016/j.datak.2016.04.001CrossRefGoogle Scholar
  17. 17.
    Holland, J.H.: Complex adaptive systems. Daedalus 121, 17–30 (1992)Google Scholar
  18. 18.
    Agostinho, C., Jardim-Goncalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: a complex systems perspective. Ann. Rev. Control 39, 128–143 (2015).  https://doi.org/10.1016/j.arcontrol.2015.03.012CrossRefGoogle Scholar
  19. 19.
    Weichhart, G., Molina, A., Chen, D., Whitman, L.E., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Comput. Ind. 79, 34–46 (2016).  https://doi.org/10.1016/j.compind.2015.07.002CrossRefGoogle Scholar
  20. 20.
    Weichhart, G., Stary, C.: A domain specific language for organisational interoperability. In: Ciuciu, I., et al. (eds.) OTM 2015. LNCS, vol. 9416, pp. 117–126. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26138-6_15CrossRefGoogle Scholar
  21. 21.
    Hedberg, T.D., Hartman, N.W., Rosche, P., Fischer, K.: Identified research directions for using manufacturing knowledge earlier in the product life cycle. Int. J. Prod. Res. 55, 819–827 (2017).  https://doi.org/10.1080/00207543.2016.1213453CrossRefGoogle Scholar
  22. 22.
    Imran, M., Young, R.I.M.: Reference ontologies for interoperability across multiple assembly systems. Int. J. Prod. Res. 54, 5381–5403 (2016).  https://doi.org/10.1080/00207543.2015.1087654CrossRefGoogle Scholar
  23. 23.
    Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N.: Semantic annotations for semantic interoperability in a product lifecycle management context. Int. J. Prod. Res. 54, 5534–5553 (2016).  https://doi.org/10.1080/00207543.2016.1165875CrossRefGoogle Scholar
  24. 24.
    Zacharewicz, G., et al.: Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges. Inf. Syst. E-Bus. Manag. 15, 229–256 (2017).  https://doi.org/10.1007/s10257-016-0317-8CrossRefGoogle Scholar
  25. 25.
    Vargas, A., Cuenca, L., Boza, A., Sacala, I., Moisescu, M.: Towards the development of the framework for inter sensing enterprise architecture. J. Intell. Manuf. 27, 55–72 (2016).  https://doi.org/10.1007/s10845-014-0901-zCrossRefGoogle Scholar
  26. 26.
    Kurti, R.S., Kurti, D.L., Fleming, L.: The philosophy of educational makerspaces: part 1 of making an educational makerspace. Teac. Libr. 41, 8–11 (2014)Google Scholar
  27. 27.
    Boekaerts, M.: Emotions, emotion regulation, and self-regulation of learning. In: Zimmermann, B.J., Schunk, D.H. (eds.) Handbook of Self-Regulation of Learning and Performance, pp. 408–425. Routledge, New York (2011)Google Scholar
  28. 28.
    Ertmer, P.A., Newby, T.J.: Behaviorism, cognitivism, constructivism: comparing critical features from an instructional design perspective. Perform. Improv. Q. 26, 43–71 (2013).  https://doi.org/10.1002/piq.21143CrossRefGoogle Scholar
  29. 29.
    Schcolnik, M., Kol, S., Abarbanel, J.: Constructivism in theory and in practice. Engl. Teach. Forum 44, 12–20 (2006)Google Scholar
  30. 30.
    Azevedo, R., Behnagh, R.F., Duffy, M., Harley, J.M., Trevors, G.: Metacognition and self-regulated learning in student-centered learning environments. In: Jonassen, D., Land, S. (eds.) Theoretical Foundations of Learning Environments, pp. 171–197. Routledge, New York (2012)Google Scholar
  31. 31.
    Beishuizen, J., Steffens, K.: A conceptual framework for research on self-regulated learning. In: Carneiro, R., Lefrere, P., Steffens, K., Underwood, J. (eds.) Self-Regulated Learning in Technology Enhanced Learning Environments: A European Perspective, pp. 3–19. SensePublishers, Rotterdam (2011).  https://doi.org/10.1007/978-94-6091-654-0_1CrossRefGoogle Scholar
  32. 32.
    Puustinen, M., Pulkkinen, L.: Models of self-regulated learning: a review. Scand. J. Educ. Res. 45, 269–286 (2001).  https://doi.org/10.1080/00313830120074206CrossRefGoogle Scholar
  33. 33.
    Winne, P.H., Hadwin, A.F.: Studying as self-regulated learning. In: Hacker, D.J., Dunlosky, J., Graesser, A.C. (eds.) Metacognition in Educational Theory and Practice, pp. 27–30. Lawrence Erlbaum Associates Publishers, Mahwah (1998)Google Scholar
  34. 34.
    Winne, P.H., Perry, N.E.: Measuring self-regulated learning. In: Handbook of Self-Regulation, pp. 531–566. Elsevier (2000).  https://doi.org/10.1016/B978-012109890-2/50045-7
  35. 35.
    Smay, D., Walker, C.: Makerspaces: a creative approach to education. Teach. Libr. 42, 39–43 (2015)Google Scholar
  36. 36.
    Carulli, M., Bordegoni, M., Bianchini, M., Bolzan, P., Maffei, S.: A Novel Educational Model Based on “Knowing How to Do” Paradigm Implemented in an Academic Makerspace, vol. 34, pp. 7–29 (2017)Google Scholar
  37. 37.
    Hevner, A.: A three cycle view of design science research. Scand. J. Inf. Syst. 19, 87–92 (2007)Google Scholar
  38. 38.
    Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. J. Assoc. Inf. Syst. 19, 358–376 (2018).  https://doi.org/10.17705/1jais.00495CrossRefGoogle Scholar
  39. 39.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007).  https://doi.org/10.2753/MIS0742-1222240302CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christian Stary
    • 1
    Email author
  • Georg Weichhart
    • 1
    • 2
  • Claudia Kaar
    • 1
  1. 1.Department of Communications EngineeringJohannes Kepler UniversityLinzAustria
  2. 2.PROFACTOR GmbhSteyrAustria

Personalised recommendations