Artificial Intelligence in Medical Diagnosis: Methods, Algorithms and Applications

  • J. H. Kamdar
  • J. Jeba Praba
  • John J. GeorrgeEmail author
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 13)


Artificial intelligence (AI) has evolved rapidly since the late 1980s. Increasing of healthcare datasets and its performance, the past two decades have seen an exponential progress in publications on AI. However, with the advent of increased computational power, availability of AI devices was increased. There are two main devices in AI, machine learning, where structured data (i.e. images, EP and genetic data) are analyzed and natural language processing, where unstructured data are analyzed. Both AI devices have been improved in great detail over the past two decades for its methods, algorithms, and applications. However, various attempts and new methods of AI have been used in recent years and few diseases such as cancer, nervous system disease, cardiovascular disease, liver disease, congenital cataract disease, etc. were potentially analyzed using AI. Now a day an advanced method called deep learning has initiated a boom of AI and great modifications of diagnostic medical imaging systems like endoscopic diagnosis, pathology and dermatology will be expected in the near future. Herein, the authors give a basic technical knowledge about popular methods, algorithms and applications in medical diagnosis which emerged in the past years.


Medical diagnosis Deep learning Machine learning Genetic algorithm Cancer Nervous system disease Cardiovascular disease Liver disease 


  1. 1.
    N. Afzal, V.P. Mallipeddi, S. Sohn, H. Liu, R. Chaudhry, C.G. Scott, I.J. Kullo, A.M. Arruda-Olson, Natural language processing of clinical notes for identification of critical limb ischemia. Int. J. Med. Inform. 111, 83–89 (2018)CrossRefGoogle Scholar
  2. 2.
    N. Afzal, S. Sohn, S. Abram, C.G. Scott, R. Chaudhry, H. Liu, I.J. Kullo, A.M. Arruda-Olson, Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J. Vasc. Surg. 65(6), 1753–1761 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Agah, Introduction to medical applications of artificial intelligence, in Medical Applications of Artificial Intelligence (CRC Press, 2013), pp. 19–26Google Scholar
  4. 4.
    S. Bacchi, T. Zerner, L. Oakden-Rayner, T. Kleinig, S. Patel, J. Jannes, Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study. Acad. Radiol. (2019)Google Scholar
  5. 5.
    V.M. Castro, D. Dligach, S. Finan, S. Yu, A. Can, M. Abd-El-Barr, V. Gainer, N.A. Shadick, S. Murphy, T. Cai, G. Savova, Large-scale identification of patients with cerebral aneurysms using natural language processing. Neurology 88(2), 164–168 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Chen, H. Xie, F.L. Wang, Z. Liu, J. Xu, T. Hao, A bibliometric analysis of natural language processing in medical research. BMC Med. Inform. Decis. Mak. 18(1), 14 (2018)CrossRefGoogle Scholar
  7. 7.
    C.L. Chung, K.J. Huang, S.Y. Chen, M.H. Lai, Y.C. Chen, Y.F. Kuo, Detecting Bakanae disease in rice seedlings by machine vision. Comput. Electron. Agric. 121, 404–411 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  9. 9.
    M. Craninx, V. Fievez, B. Vlaeminck, B. De Baets, Artificial neural network models of the rumen fermentation pattern in dairy cattle. Comput. Electron. Agric. 60, 226–238 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Dheeba, N.A. Singh, S.T. Selvi, Computer-aided detection of breast cancer on mammograms: a swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 49, 45–52 (2014)CrossRefGoogle Scholar
  11. 11.
    V.B. Dongre, L.S. Kokate, V.M. Salunke, S.M. Durge, V.N. Khandait, P.V. Patil, Artificial intelligence for prediction of standard lactation milk yield in Deoni cattle. Int. J. Livestock Res. 7(11), 167–173 (2017)Google Scholar
  12. 12.
    M. Durairaj, K. Meena, A hybrid prediction system using rough sets and artificial neural networks. Int. J. Innov. Technol. Creative Eng. 1, 16–23 (2011). ISSN: 2045-8711Google Scholar
  13. 13.
    R. Dutta, D. Smith, R. Rawnsley, G. Bishop-Hurley, J. Hills, G. Timms, D. Henry, Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 111, 18–28 (2015)CrossRefGoogle Scholar
  14. 14.
    M.A. Ebrahimi, M.H. Khoshtaghaza, S. Minaei, B. Jamshidi, Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 137, 52–58 (2017)CrossRefGoogle Scholar
  15. 15.
    A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun, Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, F. Negro, N. Jiang, K. Bergmeister, A. Andalib, J. Principe, O.C. Aszmann, Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat. Biomed. Eng. 1(2), 0025 (2017)CrossRefGoogle Scholar
  17. 17.
    K.P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Fiszman, W.W. Chapman, D. Aronsky, R.S. Evans, P.J. Haug, Automatic detection of acute bacterial pneumonia from chest X-ray reports. J. Am. Med. Inform. Assoc. 7(6), 593–604 (2000)CrossRefGoogle Scholar
  19. 19.
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)zbMATHGoogle Scholar
  20. 20.
    J.C. Griffis, J.B. Allendorfer, J.P. Szaflarski, Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J. Neurosci. Methods 257, 97–108 (2016)CrossRefGoogle Scholar
  21. 21.
    V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  22. 22.
    T.J. Hirschauer, H. Adeli, J.A. Buford, Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J. Med. Syst. 39(11), 179 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, Y. Wang, Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)CrossRefGoogle Scholar
  24. 24.
    J.H. John, Neural network and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    A. Kamilaris, F.X. Prenafeta-Boldú, Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)CrossRefGoogle Scholar
  26. 26.
    K. Kamnitsas, C. Ledig, V.F. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Khedher, J. Ramírez, J.M. Górriz, A. Brahim, F. Segovia, Alzheimer’s Disease Neuroimaging Initiative, Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151, 139–150 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Kim, V. Zhu, J. Obeid, L. Lenert, Natural language processing and machine learning algorithm to identify brain MRI reports with acute ischemic stroke. PLoS ONE 14(2), e0212778 (2019)CrossRefGoogle Scholar
  29. 29.
    S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    E. Long, H. Lin, Z. Liu, X. Wu, L. Wang, J. Jiang, Y. An, Z. Lin, X. Li, J. Chen, J. Li, An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat. Biomed. Eng. 1(2), 0024 (2017)CrossRefGoogle Scholar
  31. 31.
    T.P. Miller, Y. Li, K.D. Getz, J. Dudley, E. Burrows, J. Pennington, A. Ibrahimova, B.T. Fisher, R. Bagatell, A.E. Seif, R. Grundmeier, Using electronic medical record data to report laboratory adverse events. Br. J. Haematol. 177(2), 283–286 (2017)CrossRefGoogle Scholar
  32. 32.
    I.R. Morales, D.R. Cebrián, E. Fernandez-Blanco, A.P. Sierra, Early warning in egg production curves from commercial hens: a SVM approach. Comput. Electron. Agric. 121, 169–179 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Orru, W. Pettersson-Yeo, A.F. Marquand, G. Sartori, A. Mechelli, Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012)CrossRefGoogle Scholar
  34. 34.
    X.E. Pantazi, D. Moshou, R. Oberti, J. West, A.M. Mouazen, D. Bochtis, Detection of biotic and abiotic stresses in crops by using hierarchical self-organizing classifiers. Precis. Agric. 18, 383–393 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Pearson, LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)zbMATHCrossRefGoogle Scholar
  36. 36.
    V. Pegorini, L.Z. Karam, C.S.R. Pitta, R. Cardoso, J.C.C. da Silva, H.J. Kalinowski, R. Ribeiro, F.L. Bertotti, T.S. Assmann, In vivo pattern classification of ingestive behavior in ruminants using FBG sensors and machine learning. Sensors 15, 28456–28471 (2015)CrossRefGoogle Scholar
  37. 37.
    A.N. Ramesh, C. Kambhampati, J.R. Monson, P.J. Drew, Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)CrossRefGoogle Scholar
  38. 38.
    D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, G.Z. Yang, Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016)CrossRefGoogle Scholar
  39. 39.
    J.M. Rondina, M. Filippone, M. Girolami, N.S. Ward, Decoding post-stroke motor function from structural brain imaging. NeuroImage Clin. 12, 372–380 (2016)CrossRefGoogle Scholar
  40. 40.
    M.M. Santoni, D.I. Sensuse, A.M. Arymurthy, M.I. Fanany, Cattle race classification using gray level co-occurrence matrix convolutional neural networks. Procedia Comput. Sci. 59, 493–502 (2015)CrossRefGoogle Scholar
  41. 41.
    S.C. Shapiro, Artificial intelligence, in Encyclopedia of Artificial Intelligence, vol. 1, 2nd edn., ed. by S.C. Shapiro (Wiley, New York, 1992)Google Scholar
  42. 42.
    N.H. Sweilam, A.A. Tharwat, N.A. Moniem, Support vector machine for diagnosis cancer disease: a comparative study. Egypt. Inform. J. 11(2), 81–92 (2010)CrossRefGoogle Scholar
  43. 43.
    R.E. Thornhill, C. Lum, A. Jaberi, P. Stefanski, C.H. Torres, F. Momoli, W. Petrcich, D. Dowlatshahi, Can shape analysis differentiate free-floating internal carotid artery thrombus from atherosclerotic plaque in patients evaluated with CTA for stroke or transient ischemic attack? Acad. Radiol. 21(3), 345–354 (2014)CrossRefGoogle Scholar
  44. 44.
    A. Yardimci, A survey on use of soft computing methods in medicine, in Proceedings of the 17th International Conference on Artificial Neural Networks, Porto, Portugal (2007), pp. 69–79Google Scholar
  45. 45.
    Q.Y. Zhong, E.W. Karlson, B. Gelaye, S. Finan, P. Avillach, J.W. Smoller, T. Cai, M.A. Williams, Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs. clinical notes processed by natural language processing. BMC Med. Inform. Decis. Making 18(1), 30 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. H. Kamdar
    • 1
  • J. Jeba Praba
    • 2
  • John J. Georrge
    • 3
    Email author
  1. 1.ICAR-Directorate of Groundnut ResearchJunagadhIndia
  2. 2.Department of Computer ApplicationsChrist CollegeRajkotIndia
  3. 3.Department of BioinformaticsChrist CollegeRajkotIndia

Personalised recommendations