Advertisement

Clinical Decision Support Systems and Predictive Analytics

  • Ravi LourdusamyEmail author
  • Xavierlal J. Mattam
Chapter
  • 20 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 13)

Abstract

The chapter introduces the history of the clinical decision support system beginning with the history of the system of decision making. It is an overview of how the clinical decision support systems developed through the years. The current technology used in decision making are also discussed. With the use of artificial intelligence, the clinical decision support systems have moved to the realm of predictive analysis to find out the possibilities of diseases rather than just the diagnosis and treatment. The chapter also elaborates the various types of clinical decision supports systems. Although the decision support systems are widely regard as an important and integral part of healthcare there has been a notable reluctance in the use of clinical decision support systems. The chapter also discusses the practical challenges in the implementation of the clinical decision support systems in healthcare organisations. Each of the topics in the chapter is dealt with summarily and the reference to a detailed study is provide. The idea is to provide a clear understanding of the system rather than to fully elaborate the system.

Keywords

Clinical decision support systems Predictive analytics Decision making Artificial intelligence Medical diagnosis and treatment 

References

  1. 1.
    A.M. Shahsavarani, E. Azad Marz Abadi, M. Hakimi Kalkhoran, S. Jafari, S. Qaranli, Clinical decision support systems (CDSSs): state of the art review of literature. Int. J. Med. Rev. 2(4), 299–308 (2015)Google Scholar
  2. 2.
    K. Farooq, B.S. Khan, M.A. Niazi, S.J. Leslie, A. Hussain, Clinical decision support systems: a visual survey (2017). arXiv preprint arXiv:1708.09734
  3. 3.
    D.P. McCallie, Clinical decision support: history and basic concepts, in Healthcare Information Management Systems. (Springer, Cham, 2016), pp. 3–19Google Scholar
  4. 4.
    R.A. Greenes, A brief history of clinical decision support: technical, social, cultural, economic, and governmental perspectives, in Clinical Decision Support (Academic Press, 2007), pp. 31–77Google Scholar
  5. 5.
    R.A. Miller, Computer-assisted diagnostic decision support: history, challenges, and possible paths forward. Adv. Health Sci. Educ. 14(1), 89–106 (2009)CrossRefGoogle Scholar
  6. 6.
    R.A. Miller, Medical diagnostic decision support systems—past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1(1), 8–27 (1994)CrossRefGoogle Scholar
  7. 7.
    V.L. Patel, J.F. Arocha, J. Zhang, Thinking and reasoning in medicine, in The Cambridge Handbook of Thinking and Reasoning, vol. 14 (2005) , pp 727–750Google Scholar
  8. 8.
    L.D. Broemeling, An account of early statistical inference in Arab cryptology. Am. Stat. 65(4), 255–257 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F.N. David, Games, Gods, and Gambling: A History of Probability and Statistical Ideas (Courier Corporation, 1998)Google Scholar
  10. 10.
    J.K. Victor, A. Katz, Algebra, geometry, and probability in the seventeenth century, A History of Mathematics: An Introduction (Addison-Wesley, Boston, 2009)zbMATHGoogle Scholar
  11. 11.
    C.P. Robert, Reading Théorie Analytique des Probabilités (2012). arXiv preprint arXiv:1203.6249
  12. 12.
    A. Cantillo, The Problem of Points (2011). Retrieved 14 Oct 2019, from https://mpra.ub.uni-muenchen.de/50831/
  13. 13.
    R. Pulskamp, Summa de Arithmetica, geometria e proportionalita (2009). Retrieved 14 Oct 2019, from http://www.cs.xu.edu/math/Sources/Pacioli/summa.pdf
  14. 14.
    R. Pulskamp, Prima parte del General Tratatto Book 16, Section 206 (2009). Retrieved 14 Oct 2019, from http://www.cs.xu.edu/math/Sources/Tartaglia/tartaglia_trattato_2col.pdf
  15. 15.
    R. Pulskamp, Practica arithmetice et mensurandi singularis (2009). Retrieved 14 Oct 2019, from http://www.cs.xu.edu/math/Sources/Cardano/cardan_pratica.pdf
  16. 16.
    F.A. Nash, Differential diagnosis, an apparatus to assist the logical faculties. Lancet 266(6817), 874–875 (1954)CrossRefGoogle Scholar
  17. 17.
    M. Lipkin, J.D. Hardy, Differential diagnosis of hematologic diseases aided by mechanical correlation of data. Science 125(3247), 551–552 (1957)CrossRefGoogle Scholar
  18. 18.
    R.S. Ledley, L.B. Lusted, Reasoning foundations of medical diagnosis. Science 130(3366), 9–21 (1959)zbMATHCrossRefGoogle Scholar
  19. 19.
    C.B. Crumb Jr, C.E. Rupe, The automatic digital computer as an aid in medical diagnosis, in Papers presented at the December 1–3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference (ACM, 1959) , pp. 174–180Google Scholar
  20. 20.
    M. Lipkin, R.L. Engle, B.J. Davis, V.K. Zworykin, R. Ebald, M. Sendrow, C. Berkley, Digital computer as aid to differential diagnosis: use in hematologic diseases. Arch. Intern. Med. 108(1), 56–72 (1961)CrossRefGoogle Scholar
  21. 21.
    H.R. Warner, A.F. Toronto, L.G. Veasey, R. Stephenson, A mathematical approach to medical diagnosis: application to congenital heart disease. JAMA 177(3), 177–183 (1961)CrossRefGoogle Scholar
  22. 22.
    W.V. Slack, P. Hicks, C.E. Reed, L.J. Van Cura, A computer-based medical-history system. N. Engl. J. Med. 274(4), 194–198 (1966)CrossRefGoogle Scholar
  23. 23.
    G.A. Gorry, Strategies for computer-aided diagnosis. Math. Biosci. 2(3–4), 293–318 (1968)CrossRefGoogle Scholar
  24. 24.
    R.E. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment. Manage. Sci. 17(4), 141 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    A.M. Heekin, J. Kontor, H.C. Sax, M.S. Keller, A. Wellington, S. Weingarten, Choosing Wisely clinical decision support adherence and associated inpatient outcomes. Am. J. Managed Care 24(8), 361–366 (2018)Google Scholar
  26. 26.
    A. Schedlbauer, V. Prasad, C. Mulvaney, S. Phansalkar, W. Stanton, D.W. Bates, A.J. Avery, What evidence supports the use of computerized alerts and prompts to improve clinicians’ prescribing behavior? J. Am. Med. Inform. Assoc. 16(4), 531–538 (2009)CrossRefGoogle Scholar
  27. 27.
    J.C. Cox, V. Sadiraj, K.E. Schnier, J.F. Sweeney, Higher quality and lower cost from improving hospital discharge decision making. J. Econ. Behav. Organ. 131, 1–16 (2016)CrossRefGoogle Scholar
  28. 28.
    L.S. Elliott, J.C. Henderson, M.B. Neradilek, N.A. Moyer, K.C. Ashcraft, R.K. Thirumaran, Clinical impact of pharmacogenetic profiling with a clinical decision support tool in polypharmacy home health patients: a prospective pilot randomized controlled trial. PLoS ONE 12(2), e0170905 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Baechle, A. Agarwal, A framework for the estimation and reduction of hospital readmission penalties using predictive analytics. J. Big Data 4(1), 37 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Roosan, M. Samore, M. Jones, Y. Livnat, J. Clutter, Big-data based decision-support systems to improve clinicians’ cognition, in 2016 IEEE International Conference on Healthcare Informatics (ICHI) (IEEE, 2016, October), pp. 285–288Google Scholar
  31. 31.
    D.A. Dang, D.S. Mendon, The value of big data in clinical decision making. Int. J. Comput. Sci. Inf. Technol. 6(4), 3830–3835 (2015)Google Scholar
  32. 32.
    W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(1), 3 (2014)CrossRefGoogle Scholar
  33. 33.
    D.W. Bates, S. Saria, L. Ohno-Machado, A. Shah, G. Escobar, Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33(7), 1123–1131 (2014)CrossRefGoogle Scholar
  34. 34.
    G. Gürsel, Healthcare, uncertainty, and fuzzy logic. Digit. Med. 2(3), 101 (2016)CrossRefGoogle Scholar
  35. 35.
    E. Chan, H. Zhu, W. Bazzi, Fuzzy Logic and Probability Theory. Retrieved 20 Oct 2019, from http://pami.uwaterloo.ca/~sd625/Students/lhan_zhu_bazzi/flpt.pdf
  36. 36.
    P. Hájek, L. Godo, F. Esteva, Fuzzy logic and probability. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers Inc, 1995, August), pp. 237–244Google Scholar
  37. 37.
    D. Dubois, H. Prade, Fuzzy sets and probability: misunderstandings, bridges and gaps, in [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems (IEEE, 1993, March), pp. 1059–1068Google Scholar
  38. 38.
    D. Dubois, H. Prade, Fuzzy sets, probability and measurement. Eur. J. Oper. Res. 40(2), 135–154 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    E. Sanchez, Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic, in Readings in Fuzzy Sets for Intelligent Systems (Morgan Kaufmann, 1993), pp. 159–165Google Scholar
  40. 40.
    A.E. Samuel, S. Rajakumar, On intuitionistic fuzzy modal operators in medical diagnosis. Int. J. Eng. Sci. Math. 7(4), 313–318 (2018)Google Scholar
  41. 41.
    S.K. De, R. Biswas, A.R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)zbMATHCrossRefGoogle Scholar
  42. 42.
    E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications. In International Conference on Computational Intelligence (Springer, Berlin, 2001, October), pp. 148–151Google Scholar
  43. 43.
    S. Das, D. Guha, B. Dutta, Medical diagnosis with the aid of using fuzzy logic and intuitionistic fuzzy logic. Appl. Intell. 45(3), 850–867 (2016)CrossRefGoogle Scholar
  44. 44.
    N.H. Phuong, V. Kreinovich, Fuzzy logic and its applications in medicine. Int. J. Med. Inform. 62(2–3), 165–173 (2001)CrossRefGoogle Scholar
  45. 45.
    M.A. Madkour, M. Roushdy, Methodology for medical diagnosis based on fuzzy logic. Egypt. Comput. Sci. J. 26(1), 1–9 (2004)Google Scholar
  46. 46.
    V. Prasath, N. Lakshmi, M. Nathiya, N. Bharathan, P. Neetha, A survey on the applications of fuzzy logic in medical diagnosis. Int. J. Sci. Eng. Res. 4(4), 1199–1203 (2013)Google Scholar
  47. 47.
    J. Warren, G. Beliakov, B. Van Der Zwaag, Fuzzy logic in clinical practice decision support systems, in Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (IEEE, 2000, January), pp. 10-ppGoogle Scholar
  48. 48.
    J.H. Bates, M.P. Young, Applying fuzzy logic to medical decision making in the intensive care unit. Am. J. Respir. Crit. Care Med. 167(7), 948–952 (2003)CrossRefGoogle Scholar
  49. 49.
    R.W. Leung, H.C. Lau, C.K. Kwong, On a responsive replenishment system: a fuzzy logic approach. Expert Syst. 20(1), 20–32 (2003)CrossRefGoogle Scholar
  50. 50.
    O. Gorgulu, A. Akilli, Use of fuzzy logic based decision support systems in medicine. Stud. Ethno-Med. 10(4), 393–403 (2016)CrossRefGoogle Scholar
  51. 51.
    R. Fullér, Neuro-Fuzzy methods for modeling and fault diagnosis. Eötvös Loránd University, Budapest VacationSchool 1–22 (2001)Google Scholar
  52. 52.
    E. Sanchez, C. Toro, A. Artetxe, M. Graña, C. Sanin, E. Szczerbicki, E. Carrasco, F. Guijarro, Bridging challenges of clinical decision support systems with a semantic approach. A case study on breast cancer. Pattern Recogn. Lett. 34(14), 1758–1768 (2013)CrossRefGoogle Scholar
  53. 53.
    A. Donald, R. Milne, Implementing research findings in clinical practice. Getting Res. Find. Pract. 95–106 (2002)Google Scholar
  54. 54.
    S.V. Kovalchuk, K.V. Knyazkov, I.I. Syomov, A.N. Yakovlev, A.V. Boukhanovsky, Personalized clinical decision support with complex hospital-level modelling. Procedia Comput. Sci. 66, 392–401 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Wyatt, Information for clinicians: use and sources of medical knowledge. Lancet 338(8779), 1368–1373 (1991)CrossRefGoogle Scholar
  56. 56.
    A. Berlin, M. Sorani, I. Sim, A taxonomic description of computer-based clinical decision support systems. J. Biomed. Inform. 39(6), 656–667 (2006)CrossRefGoogle Scholar
  57. 57.
    C.P. Friedman, A “fundamental theorem” of biomedical informatics. J. Am. Med. Inform. Assoc. 16(2), 169–170 (2009)CrossRefGoogle Scholar
  58. 58.
    S. Mani, Note on Friedman’s ‘fundamental theorem of biomedical informatics’. J. Am. Med. Inform. Assoc. 17(5), 614 (2010)CrossRefGoogle Scholar
  59. 59.
    J.S. Hunter, Enhancing Friedman’s “fundamental theorem of biomedical informatics”. J. Am. Med. Inform. Assoc. JAMIA 17(1), 112 (2010)CrossRefGoogle Scholar
  60. 60.
    S. Medlock, J.C. Wyatt, V.L. Patel, E.H. Shortliffe, A. Abu-Hanna, Modeling information flows in clinical decision support: key insights for enhancing system effectiveness. J. Am. Med. Inform. Assoc. 23(5), 1001–1006 (2016)CrossRefGoogle Scholar
  61. 61.
    R.A. Greenes, D.W. Bates, K. Kawamoto, B. Middleton, J. Osheroff, Y. Shahar, Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J. Biomed. Inform. 78, 134–143 (2018)CrossRefGoogle Scholar
  62. 62.
    M.M. Yusof, J. Kuljis, A. Papazafeiropoulou, L.K. Stergioulas, An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit). Int. J. Med. Inform. 77(6), 386–398 (2008)CrossRefGoogle Scholar
  63. 63.
    E. Kilsdonk, L.W. Peute, M.W. Jaspers, Factors influencing implementation success of guideline-based clinical decision support systems: a systematic review and gaps analysis. Int. J. Med. Inform. 98, 56–64 (2017)CrossRefGoogle Scholar
  64. 64.
    E.M. Rogers, Elements of diffusion, in Diffusion of Innovations, vol. 5, no. 1.38 (2003)Google Scholar
  65. 65.
    M. Fleuren, K. Wiefferink, T. Paulussen, Determinants of innovation within health care organizations: literature review and Delphi study. Int. J. Qual. Health Care 16(2), 107–123 (2004)CrossRefGoogle Scholar
  66. 66.
    M. Pardo del Val, C. Martínez Fuentes, Resistance to change: a literature review and empirical study. Manage. Decis. 41(2), 148–155 (2003)CrossRefGoogle Scholar
  67. 67.
    H.M. Korhonen, I. Kaarela, Corporate customers’ resistance to industrial service innovations. Int. J. Innov. Manage. 15(03), 479–503 (2011)CrossRefGoogle Scholar
  68. 68.
    W.H. Delone, E.R. McLean, The DeLone and McLean model of information systems success: a ten-year update. J Manage. Inform. Syst. 19(4), 9–30 (2003)CrossRefGoogle Scholar
  69. 69.
    V. Venkatesh, M.G. Morris, G.B. Davis, F.D. Davis, User acceptance of information technology: toward a unified view. MIS Q. 425–478 (2003)Google Scholar
  70. 70.
    P. Madhavan, R.R. Phillips, Effects of computer self-efficacy and system reliability on user interaction with decision support systems. Comput. Hum. Behav. 26(2), 199–204 (2010)CrossRefGoogle Scholar
  71. 71.
    M.H. Trivedi, E.J. Daly, J.K. Kern, B.D. Grannemann, P. Sunderajan, C.A. Claassen, Barriers to implementation of a computerized decision support system for depression: an observational report on lessons learned in “real world” clinical settings. BMC Med. Inform. Decis. Mak. 9(1), 6 (2009)CrossRefGoogle Scholar
  72. 72.
    K. Alammar, M. Alamrani, S. Alqahtani, M. Ahmad, Organizational commitment and nurses characteristics as predictors of job involvement. Can. J. Nurs. Leadersh. (2016)Google Scholar
  73. 73.
    K.T. Win, W. Susilo, Y. Mu, Personal health record systems and their security protection. J. Med. Syst. 30(4), 309–315 (2006)CrossRefGoogle Scholar
  74. 74.
    C.K. Wang, Security and privacy of personal health record, electronic medical record and health information. Management 13(4), 19–26 (2015)Google Scholar
  75. 75.
    A.N.H. Zaied, M. Elmogy, S.A. Elkader, Electronic health records: applications, techniques and challenges. Int. J. Comput. Appl. 119(14) (2015)Google Scholar
  76. 76.
    A. Kumar, Stakeholder’s perspective of clinical decision support system. Open J. Bus. Manage. 4(1), 45–50 (2015)CrossRefGoogle Scholar
  77. 77.
    A. Bhattacherjee, N. Hikmet, Physicians’ resistance toward healthcare information technology: a theoretical model and empirical test. Eur. J. Inf. Syst. 16(6), 725–737 (2007)CrossRefGoogle Scholar
  78. 78.
    D.W. Bates, G.J. Kuperman, S. Wang, T. Gandhi, A. Kittler, L. Volk, C. Spurr, R. Khorasani, M. Tanasijevic, B. Middleton, Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J. Am. Med. Inform. Assoc. 10(6), 523–530 (2003)CrossRefGoogle Scholar
  79. 79.
    C. Vaghela, N. Bhatt, D. Mistry, A survey on various classification techniques for clinical decision support system. Int. J. Comput. Appl. 116(23) (2015)Google Scholar
  80. 80.
    A.T.M. Wasylewicz, A.M.J.W. Scheepers-Hoeks, Clinical decision support systems, in Fundamentals of Clinical Data Science, ed. by P. Kubben, M. Dumontier, A. Dekker (Springer, Cham, 2019)Google Scholar
  81. 81.
    E.A. Mendonça, Clinical decision support systems: perspectives in dentistry. J. Dent. Educ. 68(6), 589–597 (2004)Google Scholar
  82. 82.
    L.A. Wallis, J. Fleming, M. Hasselberg, L. Laflamme, J. Lundin, A smartphone app and cloud-based consultation system for burn injury emergency care. PLoS ONE 11(2), e0147253 (2016)CrossRefGoogle Scholar
  83. 83.
    H. Hagberg, J. Siebert, A. Gervaix, P. Daehne, C. Lovis, S. Manzano, F. Ehrler, Improving drugs administration safety in pediatric resuscitation using mobile technology, in Nursing Informatics (2016), pp. 656–657Google Scholar
  84. 84.
    A. Curcio, S. De Rosa, J. Sabatino, S. De Luca, A. Bochicchio, A. Polimeni, G. Santarpia, P. Ricci, C. Indolfi, Clinical usefulness of a mobile application for the appropriate selection of the antiarrhythmic device in heart failure. Pacing Clin. Electrophysiol. 39(7), 696–702 (2016)CrossRefGoogle Scholar
  85. 85.
    K. Blagec, K.M. Romagnoli, R.D. Boyce, M. Samwald, Examining perceptions of the usefulness and usability of a mobile-based system for pharmacogenomics clinical decision support: a mixed methods study. PeerJ 4, e1671 (2016)CrossRefGoogle Scholar
  86. 86.
    U. Sarkar, G.I. Gourley, C.R. Lyles, L. Tieu, C. Clarity, L. Newmark, K. Singh, D.W. Bates, Usability of commercially available mobile applications for diverse patients. J. Gen. Intern. Med. 31(12), 1417–1426 (2016)CrossRefGoogle Scholar
  87. 87.
    B. Brouard, P. Bardo, C. Bonnet, N. Mounier, M. Vignot, S. Vignot, Mobile applications in oncology: is it possible for patients and healthcare professionals to easily identify relevant tools? Ann. Med. 48(7), 509–515 (2016)CrossRefGoogle Scholar
  88. 88.
    N.C. Ernecoff, H.O. Witteman, K. Chon, P. Buddadhumaruk, J. Chiarchiaro, K.J. Shotsberger, A.M. Shields, B.A. Myers, C.L. Hough, S.S. Carson, B. Lo, Key stakeholders’ perceptions of the acceptability and usefulness of a tablet-based tool to improve communication and shared decision making in ICUs. J. Crit. Care 33, 19–25 (2016)CrossRefGoogle Scholar
  89. 89.
    A. White, D.S. Thomas, N. Ezeanochie, S. Bull, Health worker mHealth utilization: a systematic review. Comput. Inform. Nurs. CIN 34(5), 206 (2016)CrossRefGoogle Scholar
  90. 90.
    W.Y. Chou, P.T. Tien, F.Y. Lin, P.C. Chiu, Application of visually based, computerised diagnostic decision support system in dermatological medical education: a pilot study. Postgrad. Med. J. 93(1099), 256–259 (2017)CrossRefGoogle Scholar
  91. 91.
    E. Clarkson, J. Zutty, M.V. Raval, A visual decision support tool for appendectomy care. J. Med. Syst. 42(3), 52 (2018)CrossRefGoogle Scholar
  92. 92.
    M. Wagner, D. Slijepcevic, B. Horsak, A. Rind, M. Zeppelzauer, W. Aigner, KAVAGait: knowledge-assisted visual analytics for clinical gait analysis. IEEE Trans. Visual Comput. Graphics 25(3), 1528–1542 (2019)CrossRefGoogle Scholar
  93. 93.
    D. Gavrilis, G. Georgoulas, N. Vasiloglou, G. Nikolakopoulos, An intelligent assistant for physicians, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, 2016, August), pp. 2586–2589Google Scholar
  94. 94.
    K. Kreimeyer, M. Foster, A. Pandey, N. Arya, G. Halford, S.F. Jones, R. Forshee, M. Walderhaug, T. Botsis, Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J. Biomed. Inform. 73, 14–29 (2017)CrossRefGoogle Scholar
  95. 95.
    S.F. Sung, K. Chen, D.P. Wu, L.C. Hung, Y.H. Su, Y.H. Hu, Applying natural language processing techniques to develop a task-specific EMR interface for timely stroke thrombolysis: A feasibility study. Int. J. Med. Inform. 112, 149–157 (2018)CrossRefGoogle Scholar
  96. 96.
    N. Eskandari, Z.J. Wang, G.A. Dumont, A delayed functional observer/predictor with bounded-error for depth of hypnosis monitoring. J. Clin. Monit. Comput. 31(5), 1043–1052 (2017)CrossRefGoogle Scholar
  97. 97.
    A. Yadollahpour, J. Nourozi, S.A. Mirbagheri, E. Simancas-Acevedo, F.R. Trejo-Macotela, Designing and implementing an ANFIS based medical decision support system to predict chronic kidney disease progression. Front. Physiol. 9, 1753 (2018)CrossRefGoogle Scholar
  98. 98.
    D. Long, M. Capan, S. Mascioli, D. Weldon, R. Arnold, K. Miller, Evaluation of user-interface alert displays for clinical decision support systems for sepsis. Crit. Care Nurse 38(4), 46–54 (2018)CrossRefGoogle Scholar
  99. 99.
    P. Fraccaro, M. Vigo, P. Balatsoukas, S.N. van der Veer, L. Hassan, R. Williams, G. Wood, S. Sinha, I. Buchan, N. Peek, Presentation of laboratory test results in patient portals: influence of interface design on risk interpretation and visual search behaviour. BMC Medical Informatics and Decision Making 18(1), 11 (2018)CrossRefGoogle Scholar
  100. 100.
    H.O. Witteman, B.J. Zikmund-Fisher, Communicating laboratory results to patients and families. Clin. Chem. Lab. Med. (CCLM) 57(3), 359–364 (2019)Google Scholar
  101. 101.
    J. Liu, C. Li, J. Xu, H. Wu, A patient-oriented clinical decision support system for CRC risk assessment and preventative care. BMC Med. Inform. Decis. Mak. 18(5), 118 (2018)CrossRefGoogle Scholar
  102. 102.
    B. Brown, P. Balatsoukas, R. Williams, M. Sperrin, I. Buchan, Multi-method laboratory user evaluation of an actionable clinical performance information system: Implications for usability and patient safety. J. Biomed. Inform. 77, 62–80 (2018)CrossRefGoogle Scholar
  103. 103.
    D.F. Sittig, A. Wright, E. Coiera, F. Magrabi, R. Ratwani, D.W. Bates, H. Singh, Current challenges in health information technology–related patient safety. Health Inform. J. 1460458218814893 (2018)Google Scholar
  104. 104.
    T. Taft, C. Staes, S. Slager, C. Weir, Adapting Nielsen’s design heuristics to dual processing for clinical decision support, in AMIA Annual Symposium Proceedings, vol. 2016, (American Medical Informatics Association, 2016), p. 1179Google Scholar
  105. 105.
    M.A. Basit, K.L. Baldwin, V. Kannan, E.L. Flahaven, C.J. Parks, J.M. Ott, D.L. Willett, Agile acceptance test–driven development of clinical decision support advisories: feasibility of using open source software. JMIR Med. Inform. 6(2) (2018)Google Scholar
  106. 106.
    A. González-Ferrer, M. Peleg, M. Marcos, J.A. Maldonado, Analysis of the process of representing clinical statements for decision-support applications: a comparison of openEHR archetypes and HL7 virtual medical record. J. Med. Syst. 40(7), 163 (2016)CrossRefGoogle Scholar
  107. 107.
    Y. Wang, L. Wang, M. Rastegar-Mojarad, S. Moon, F. Shen, N. Afzal, S. Liu, Y. Zeng, S. Mehrabi, S. Sohn, H. Liu, Clinical information extraction applications: a literature review. J. Biomed. Inform. 77, 34–49 (2018)CrossRefGoogle Scholar
  108. 108.
    D.A. Cook, M.T. Teixeira, B.S. Heale, J.J. Cimino, G. Del Fiol, Context-sensitive decision support (infobuttons) in electronic health records: a systematic review. J. Am. Med. Inform. Assoc. 24(2), 460–468 (2017)Google Scholar
  109. 109.
    S. Khan, L. McCullagh, A. Press, M. Kharche, A. Schachter, S. Pardo, T. McGinn, Formative assessment and design of a complex clinical decision support tool for pulmonary embolism. BMJ Evid. Based Med. 21(1), 7–13 (2016)CrossRefGoogle Scholar
  110. 110.
    K.D. Lopez, A. Febretti, J. Stifter, A. Johnson, D.J. Wilkie, G. Keenan, Toward a more robust and efficient usability testing method of clinical decision support for nurses derived from nursing electronic health record data. Int. J. Nurs. Knowl. 28(4), 211–218 (2017)CrossRefGoogle Scholar
  111. 111.
    M.M. van Engen-Verheul, L.W. Peute, N.F. de Keizer, N. Peek, M.W. Jaspers, Optimizing the user interface of a data entry module for an electronic patient record for cardiac rehabilitation: a mixed method usability approach. Int. J. Med. Inform. 87, 15–26 (2016)CrossRefGoogle Scholar
  112. 112.
    B.S. Heale, C.L. Overby, G. Del Fiol, W.S. Rubinstein, D.R. Maglott, T.H. Nelson, A. Milosavljevic, C.L. Martin, S.R. Goehringer, R.R. Freimuth, M.S. Williams, Integrating genomic resources with electronic health records using the HL7 Infobutton standard. Appl. Clin. Inform. 7(3), 817–831 (2016)CrossRefGoogle Scholar
  113. 113.
    S.M. Abdel-Rahman, M.L. Breitkreutz, C. Bi, B.J. Matzuka, J. Dalal, K.L. Casey, U. Garg, S. Winkle, J.S. Leeder, J. Breedlove, B. Rivera, Design and testing of an EHR-integrated, busulfan pharmacokinetic decision support tool for the point-of-care clinician. Front. Pharmacol. 7, 65 (2016)CrossRefGoogle Scholar
  114. 114.
    J. Kaipio, T. Lääveri, H. Hyppönen, S. Vainiomäki, J. Reponen, A. Kushniruk, E. Borycki, J. Vänskä, Usability problems do not heal by themselves: National survey on physicians’ experiences with EHRs in Finland. Int. J. Med. Inform. 97, 266–281 (2017)CrossRefGoogle Scholar
  115. 115.
    T. Porat, B. Delaney, O. Kostopoulou, The impact of a diagnostic decision support system on the consultation: perceptions of GPs and patients. BMC Med. Inform. Decis. Mak. 17(1), 79 (2017)CrossRefGoogle Scholar
  116. 116.
    S.G. Finlayson, M. Levy, S. Reddy, D.L. Rubin, Toward rapid learning in cancer treatment selection: an analytical engine for practice-based clinical data. J. Biomed. Inform. 60, 104–113 (2016)CrossRefGoogle Scholar
  117. 117.
    U. Guo, L. Chen, P.H. Mehta, Electronic health record innovations: helping physicians–One less click at a time. Health Inf. Manage. J. 46(3), 140–144 (2017)Google Scholar
  118. 118.
    M.C. Wright, S. Dunbar, B.C. Macpherson, E.W. Moretti, G. Del Fiol, J. Bolte, J.M. Taekman, N. Segall, Toward designing information display to support critical care. Appl. Clin. Inform. 7(4), 912–929 (2016)CrossRefGoogle Scholar
  119. 119.
    P. Chung, J. Scandlyn, P.S. Dayan, R.D. Mistry, Working at the intersection of context, culture, and technology: provider perspectives on antimicrobial stewardship in the emergency department using electronic health record clinical decision support. Am. J. Infect. Control 45(11), 1198–1202 (2017)CrossRefGoogle Scholar
  120. 120.
    M.J. Denney, D.M. Long, M.G. Armistead, J.L. Anderson, B.N. Conway, Validating the extract, transform, load process used to populate a large clinical research database. Int. J. Med. Informatics 94, 271–274 (2016)CrossRefGoogle Scholar
  121. 121.
    K. von Michalik, M. Kwiatkowska, K. Kielan, Application of knowledge-engineering methods in medical knowledge management, in Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care (Springer, Berlin, 2013), pp. 205–214Google Scholar
  122. 122.
    L. Aleksovska-Stojkovska, S. Loskovska, Review of reasoning methods in clinical decision support systems, in 18th Telecommunications forum TELFOR (2010)Google Scholar
  123. 123.
    Y. Jiang, B. Qiu, C. Xu, C. Li, The research of clinical decision support system based on three-layer knowledge base model. J. Healthc. Eng. 2017 (2017)Google Scholar
  124. 124.
    K.B. Wagholikar, V. Sundararajan, A.W. Deshpande, Modeling paradigms for medical diagnostic decision support: a survey and future directions. J. Med. Syst. 36(5), 3029–3049 (2012)CrossRefGoogle Scholar
  125. 125.
    M. Alther, C.K. Reddy, Clinical decision support systems, in Healthcare Data Analytics (Chapman and Hall/CRC, 2015), pp. 619–656Google Scholar
  126. 126.
    G. Kong, D.L. Xu, J.B. Yang, Clinical decision support systems: a review on knowledge representation and inference under uncertainties. Int. J. Comput. Intell. Syst. 1(2), 159–167 (2008)Google Scholar
  127. 127.
    E.S. Berner, T.J. La Lande, Overview of clinical decision support systems, Clinical Decision Support Systems (Springer, New York, NY, 2007), pp. 3–22CrossRefGoogle Scholar
  128. 128.
    S. Hajioff, Computerized decision support systems: an overview. Health Inform. J. 4(1), 23–28 (1998)CrossRefGoogle Scholar
  129. 129.
    G.C. Bell, K.R. Crews, M.R. Wilkinson, C.E. Haidar, J.K. Hicks, D.K. Baker, N.M. Kornegay, W. Yang, S.J. Cross, S.C. Howard, R.R. Freimuth, Development and use of active clinical decision support for preemptive pharmacogenomics. J. Am. Med. Inform. Assoc. 21(e1), e93–e99 (2013)CrossRefGoogle Scholar
  130. 130.
    M. Hinderer, M. Boeker, S.A. Wagner, M. Lablans, S. Newe, J.L. Hülsemann, M. Neumaier, H. Binder, H. Renz, T. Acker, H.U. Prokosch, Integrating clinical decision support systems for pharmacogenomic testing into clinical routine-a scoping review of designs of user-system interactions in recent system development. BMC Med. Inform. Decis. Mak. 17(1), 81 (2017)CrossRefGoogle Scholar
  131. 131.
    J. Osheroff, J. Teich, D. Levick, L. Saldana, F. Velasco, D. Sittig, K. Rogers, R. Jenders, Improving Outcomes with Clinical Decision Support: An Implementer’s Guide (HIMSS Publishing, New York, 2012)CrossRefGoogle Scholar
  132. 132.
    A.B. Al-Badareen, M.H. Selamat, M. Samat, Y. Nazira, O. Akkanat, A review on clinical decision support systems in healthcare. J. Convergence Inf. Technol. 9(2), 125 (2014)Google Scholar
  133. 133.
    A. De la Rosa Algarın, Clinical decision support systems in biomedical informatics and their limitations (2011)Google Scholar
  134. 134.
    V.L. Patel, E.H. Shortliffe, M. Stefanelli, P. Szolovits, M.R. Berthold, R. Bellazzi, A. Abu-Hanna, The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 46(1), 5–17 (2009)CrossRefGoogle Scholar
  135. 135.
    L.Q. Shu, Y.K. Sun, L.H. Tan, Q. Shu, A.C. Chang, Application of artificial intelligence in pediatrics: past, present and future. World J. Pediatr. WJP 15(2), 105 (2019)CrossRefGoogle Scholar
  136. 136.
    F. Jiang, Y. Jiang, H. Zhi, Y. Dong, H. Li, S. Ma, Y. Wang, Q. Dong, H. Shen, Y. Wang, Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)CrossRefGoogle Scholar
  137. 137.
    V.A. Kumari, R. Chitra, Classification of diabetes disease using support vector machine. Int. J. Eng. Res. Appl. 3(2), 1797–1801 (2013)Google Scholar
  138. 138.
    N. Barakat, A.P. Bradley, M.N.H. Barakat, Intelligible support vector machines for diagnosis of diabetes mellitus. IEEE Trans. Inf. Technol. Biomed. 14(4), 1114–1120 (2010)CrossRefGoogle Scholar
  139. 139.
    F. Amato, A. López, E.M. Peña-Méndez, P. Vaňhara, A. Hampl, J. Havel, Artificial neural networks in medical diagnosis (2013)Google Scholar
  140. 140.
    S. Viera, W.H. Pinaya, A. Mechelli, Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders. Neurosci. Biobehav. Rev. 74, 58–75 (2017)CrossRefGoogle Scholar
  141. 141.
    A.N. Ramesh, C. Kambhampati, J.R. Monson, P.J. Drew, Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)CrossRefGoogle Scholar
  142. 142.
    Q.K. Al-Shayea, Artificial neural networks in medical diagnosis. Int. J. Comput. Sci. Issues 8(2), 150–154 (2011)Google Scholar
  143. 143.
    E. Xhumari, P. Manika, Application of artificial neural networks in medicine, in RTA-CSIT (2016), pp. 155–157Google Scholar
  144. 144.
    W.G. Baxt, Application of artificial neural networks to clinical medicine. Lancet 346(8983), 1135–1138 (1995)CrossRefGoogle Scholar
  145. 145.
    S. Joseph, K. Sedimo, F. Kaniwa, H. Hlomani, K. Letsholo, Natural language processing: a review, in Natural Language Processing: A Review, vol. 6 (2016), pp. 207–210Google Scholar
  146. 146.
    J. Hutchins, The history of machine translation in a nutshell (2005). Retrieved 20 Dec 2009Google Scholar
  147. 147.
    E.D. Liddy, Natural language processing, in Encyclopedia of Library and Information Science, 2nd edn. (Marcel Decker, Inc., New York, NY, 2001)Google Scholar
  148. 148.
    C. Friedman, S.B. Johnson, Natural language and text processing in biomedicine, Biomedical Informatics (Springer, New York, NY, 2006), pp. 312–343CrossRefGoogle Scholar
  149. 149.
    E. Pons, L.M. Braun, M.M. Hunink, J.A. Kors, Natural language processing in radiology: a systematic review. Radiology 279(2), 329–343 (2016)CrossRefGoogle Scholar
  150. 150.
    D. Demner-Fushman, W.W. Chapman, C.J. McDonald, What can natural language processing do for clinical decision support? J. Biomed. Inform. 42(5), 760–772 (2009)CrossRefGoogle Scholar
  151. 151.
    L. Miner, P. Bolding, J. Hilbe, M. Goldstein, T. Hill, R. Nisbet, N. Walton, G. Miner, Prediction in medicine—the data mining algorithms of predictive analytics, in Practical Predictive Analytics and Decisioning Systems for Medicine: Informatics Accuracy and Cost-Effectiveness for Healthcare Administration and Delivery Including Medical Research (Academic Press, 2014), pp. 238–259Google Scholar
  152. 152.
    T.W. Miller, Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science (FT Press, 2014)Google Scholar
  153. 153.
    S. Finlay, Using predictive models, in Predictive Analytics, Data Mining and Big Data: Myths, Misconceptions and Methods (Springer, Berlin, 2014), pp. 21–38Google Scholar
  154. 154.
    D.T. Larose, C.D. Larose, k-nearest neighbor algorithm, in Data Mining and Predictive Analytics (Wiley, 2015), pp. 301–316Google Scholar
  155. 155.
    M. Shouman, T. Turner, R. Stocker, Applying k-nearest neighbour in diagnosing heart disease patients. Int. J. Inf. Educ. Technol. 2(3), 220–223 (2012)Google Scholar
  156. 156.
    D. Pavithra, A.N. Jayanthi, A study on machine learning algorithm in medical diagnosis. Int. J. Adv. Res. Comput. Sci. 9(4) (2018)Google Scholar
  157. 157.
    A.T. Azar, S.M. El-Metwally, Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)CrossRefGoogle Scholar
  158. 158.
    D.T. Larose, C.D. Larose, Hierarchical and k-means clustering, in Data Mining and Predictive Analytics (Wiley, 2015), pp. 523–541Google Scholar
  159. 159.
    T. Velmurugan, J. Manimaran, Implementing association rules in medical diagnosis test data, in ICICT2015 Conference: International Conference on Information and Convergence Technology for Smart Society (2015), pp. 201–205. Retrieved 27 Oct 2019, from https://www.researchgate.net/profile/Dr_Velmurugan_T/publication/287975524_Implementing_Association_Rules_in_Medical_Diagnosis_test_data/links/567aba0508ae051f9adde1ab.pdf
  160. 160.
    A.M. Doddi, S.S. Ravi, C. David, S. Torney, Discovery of association rules in medical data. Med. Inform. Internet Med. 26(1), 25–33 (2001)CrossRefGoogle Scholar
  161. 161.
    D.T. Larose, C.D. Larose, Association rules, in Data Mining and Predictive Analytics (Wiley, 2015), pp. 603–621Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceSacred Heart CollegeTirupatturIndia

Personalised recommendations