Advertisement

Machine Learning Methods for Managing Parkinson’s Disease

  • Kunjan VyasEmail author
  • Shubhendu Vyas
  • Nikunj Rajyaguru
Chapter
  • 20 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 13)

Abstract

A neurodegenerative disorder without permanent cure, Parkinson’s Disease (PD) increasingly hinders motor and cognitive abilities. Timely intervention of neuroprotective therapies can help minimize the early impairments in PD. Early diagnosis would play major role in facilitating such proactive treatment plan. However, the conventional methods of PD diagnosis suffer from less accessibility, high costs, human bias and patient inconvenience. Moreover, there is a dearth of high-frequency monitoring systems to track the progression. Deficient monitoring and management of the progression diminishes both quality of life and life expectancy of the patient. The challenges and concerns in conventional methods of diagnosis and treatment of PD call for use of advanced technology like Machine Learning (ML) and Internet of Things (IoT). The proposed chapter is aimed at giving insights into robust and effective practical implementation of ML with IoT in PD care. Non-invasive biomarkers data from human voice and keystrokes (tapping) are demonstrated as promising base for early diagnosis. These illustrations focus on ease of building cost efficient and scalable PD prediction systems. In addition, a multitude of contemporary developments and inspiring future opportunities for managing PD with ML are highlighted.

Keywords

Parkinson’s disease Machine learning Internet of Things Healthcare Diagnosis Monitoring 

References

  1. 1.
    E.R. Dorsey, R. Constantinescu, J.P. Thompson, K.M. Biglan, R.G. Holloway, K. Kieburtz et al., Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007).  https://doi.org/10.1212/01.wnl.0000247740.47667.03CrossRefGoogle Scholar
  2. 2.
    A. Elbaz, L. Carcaillon, S. Kab, F. Moisan, Epidemiology of Parkinson’s disease. Rev Neurol (Paris) 172(1), 14–26 (2016)CrossRefGoogle Scholar
  3. 3.
    Michael J. Fox Foundation for Parkinson’s Research. Accessed online on 23/10/19 at https://www.michaeljfox.org/understanding-parkinsons/living-with-pd/topic.php?symptoms
  4. 4.
    R.D. Sweet, F.H. McDowell, Five years’ treatment of Parkinson’s disease with levodopa. Therapeutic results and survival of 100 patients. Ann. Intern. Med. 83, 456–463 (1975).  https://doi.org/10.7326/0003-4819-83-4-456CrossRefGoogle Scholar
  5. 5.
    C.G. Goetz, W. Poewe, O. Rascol, C. Sampaio, G.T. Stebbins, C. Counsell, N. Giladi, R.G. Holloway, C.G. Moore, G.K. Wenning, M.D. Yahr, L. Seidl, Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease, Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. (Official Journal of the Movement Disorder Society) 19, 1020–1028 (2004)CrossRefGoogle Scholar
  6. 6.
    F. Pagan, Improving outcomes through early diagnosis of Parkinson’s disease. Am. J. Manag. Care 18, 176–182 (2012)Google Scholar
  7. 7.
    R. Pahwa, K.E. Lyons, Early diagnosis of Parkinson’s disease: recommendations from diagnostic clinical guidelines. Am. J. Manag. Care 16(4), 94–99 (2010)Google Scholar
  8. 8.
    W. Dauer, S. Przedborski, Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003)CrossRefGoogle Scholar
  9. 9.
    C.E. Clarke, P. Davies, Systematic review of acute levodopa and apomorphine challenge tests in the diagnosis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 69, 590–594 (2000).  https://doi.org/10.1136/jnnp.69.5.590CrossRefGoogle Scholar
  10. 10.
    C.O. Sakar, G. Serbes, A. Gunduz, H. Tunc, H. Nizam, B. Sakar, M. Tutuncu, T. Aydin, M. Isenkul, H. Apaydin, A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl. Soft Comput. 74, 255–263 (2019 Jan)Google Scholar
  11. 11.
    T.J. Wroge, Y. Özkanca, C. Demiroglu, D. Si, D.C. Atkins, R.H. Ghomi, Parkinson’s disease diagnosis using machine learning and voice, in 2018 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, pp. 1–7 (2018).  https://doi.org/10.1109/spmb.2018.8615607
  12. 12.
    M.A. Little, P.E. McSharry, S.J. Roberts, D.A.E. Costello, I.M. Moroz, Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed. Eng. OnLine 6, article 23 (2007)Google Scholar
  13. 13.
    M.A. Little, P.E. McSharry, E.J. Hunter, J. Spielman, L.O. Ramig, Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1015–1022 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Erdogdu Sakar, M. Isenkul, C.O. Sakar, A. Sertbas, F. Gurgen, S. Delil, H. Apaydin, O. Kursun, Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inf. 17(4), 828–834 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Boersma, Praat: doing phonetics by computer. Ear Hear. 32(2), 266 (2011)Google Scholar
  16. 16.
    W.R. Adams, High-accuracy detection of early Parkinson’s Disease using multiple characteristics of finger movement while typing. PLoS ONE 12(11), e0188226 (2017).  https://doi.org/10.1371/journal.pone.0188226CrossRefGoogle Scholar
  17. 17.
    W. Adams, The detection of hand tremor through the characteristics of finger movement while typing (2018).  https://doi.org/10.1101/385286
  18. 18.
    W. Adams, Keystroke dataset for ‘The detection of hand tremor through the characteristics of finger movement while typing’, Mendeley Data, v2 (2018)Google Scholar
  19. 19.
    H. He, Y. Bai, E. Garcia, S. Li, ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning in Proceedings of the International Joint Conference on Neural Networks, 1322–1328 (2008).  https://doi.org/10.1109/ijcnn.2008.4633969
  20. 20.
    L. Borzì, M. Varrecchia, G. Olmo et al., J. Reliab. Intell. Environ. 5, 145 (2019).  https://doi.org/10.1007/s40860-019-00086-xCrossRefGoogle Scholar
  21. 21.
    B. Bot, C. Suver, E. Neto et al., The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data 3, 160011 (2016).  https://doi.org/10.1038/sdata.2016.1CrossRefGoogle Scholar
  22. 22.
  23. 23.
    M.H. Li, T.A. Mestre, S.H. Fox, B. Taati, Vision-based assessment of parkinsonism and levodopa-induced dyskinesia with pose estimation. J. NeuroEng. Rehabil. 15(1), 97 (2018).  https://doi.org/10.1186/s12984-018-0446-zCrossRefGoogle Scholar
  24. 24.
    G. Tsoulos Ioannis, G. Mitsi, A. Stavrakoudis, S. Papapetropoulos, Application of machine learning in a Parkinson’s disease digital biomarker dataset using neural network construction (NNC) methodology discriminates patient motor status. Front. ICT 6 (2019).  https://doi.org/10.3389/fict.2019.00010

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.TotemXAIKarlsruheGermany
  2. 2.Robert Bosch GmBHKarlsruheGermany

Personalised recommendations