Wireless Data Communication

  • Kerim Türe
  • Catherine Dehollain
  • Franco Maloberti
Part of the Analog Circuits and Signal Processing book series (ACSP)


One of the areas where the technological developments in biomedical applications can be used most effectively is the neurological monitoring systems. Wireless data communication systems enable complete implantation of monitoring circuits for intracranial recordings. This chapter explains how bidirectional wireless data communication is established for the implanted neural monitoring system. A downlink communication using low power pulse position modulation is investigated to program the remotely powered implant. Two alternative methods, namely narrowband and ultra-wideband transmitters, are designed to perform transmitting the amplified, quantized, and analyzed neural activities to the external unit. The presented circuits are fabricated, and their characterizations are validated with measurement results.


Active inductor Bit error rate (BER) Data rate Demodulator Downlink Impulse radio ultra-wideband (IR-UWB) LC tank Loop antenna Modulation index (miModulator Narrowband transmitter On-off keying (OOK) Power spectral density (PSD) Pulse generation Pulse position modulation (PPM) Ring oscillator Ultra-wideband transmitter Uplink Voltage controlled oscillator (VCO) Wireless data transmission 


  1. 1.
    Schwarz DA, Lebedev MA, Hanson TL et al (2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 11:670–676CrossRefGoogle Scholar
  2. 2.
    Wang G, Liu W, Sivaprakasam M, Kendir GA (2005) Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans Circuits Syst Regul Pap 52:2109–2117CrossRefGoogle Scholar
  3. 3.
    Tang Z, Smith B, Schild JH, Peckham PH (1995) Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans Biomed Eng 42:524–528CrossRefGoogle Scholar
  4. 4.
    Bohorquez JL, Chandrakasan AP, Dawson JL (2009) A 350µW CMOS MSK transmitter and 400µW OOK super-regenerative receiver for medical implant communications. IEEE J Solid State Circuits 44:1248–1259CrossRefGoogle Scholar
  5. 5.
    Chae MS, Yang Z, Yuce MR et al (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans Neural Syst Rehabil Eng 17:312–321CrossRefGoogle Scholar
  6. 6.
    Ballini M, Müller J, Livi P et al (2014) A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE J Solid State Circuits 49:2705–2719CrossRefGoogle Scholar
  7. 7.
    Liu W, Vichienchom K, Clements M et al (2000) A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid State Circuits 35:1487–1497CrossRefGoogle Scholar
  8. 8.
    Lee H, Kim J, Ha D et al (2015) Differentiating ASK demodulator for contactless smart cards supporting VHBR. IEEE Trans Circuits Syst Express Briefs 62:641–645CrossRefGoogle Scholar
  9. 9.
    Ghovanloo M, Najafi K (2004) A wideband frequency-shift keying wireless link for inductively powered biomedical implants. IEEE Trans Circuits Syst Regul Pap 51:2374–2383CrossRefGoogle Scholar
  10. 10.
    Hwang Y, Hwang B, Lin H, Chen J (2013) PLL-based contactless energy transfer analog FSK demodulator using high-efficiency rectifier. IEEE Trans Ind Electron 60:280–290CrossRefGoogle Scholar
  11. 11.
    Lee S, Hsieh C, Yang C (2012) Wireless front-end with power management for an implantable cardiac microstimulator. IEEE Trans Biomed Circuits Syst 6:28–38CrossRefGoogle Scholar
  12. 12.
    Hu Y, Sawan M (2005) A fully integrated low-power BPSK demodulator for implantable medical devices. IEEE Trans Circuits Syst Regul Pap 52:2552–2562CrossRefGoogle Scholar
  13. 13.
    Gong CA, Shiue M, Yao K et al (2008) A truly low-cost high-efficiency ASK demodulator based on self-sampling scheme for bioimplantable applications. IEEE Trans Circuits Syst Regul Pap 55:1464–1477MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang C, Chen C, Kuo R, Shmilovitz D (2010) Self-sampled All-MOS ASK demodulator for lower ISM band applications. IEEE Trans Circuits Syst Express Briefs 57:265–269CrossRefGoogle Scholar
  15. 15.
    Kilinc EG, Dehollain C, Maloberti F (2014) A low-power PPM demodulator for remotely powered batteryless implantable devices. In: 2014 IEEE 57th international midwest symposium on circuits and systems (MWSCAS). pp 318–321Google Scholar
  16. 16.
    RamRakhyani AK, Mirabbasi S, Chiao M (2011) Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans Biomed Circuits Syst 5:48–63CrossRefGoogle Scholar
  17. 17.
    Muller R, Le H, Li W et al (2015) A minimally invasive 64-channel wireless µECoG implant. IEEE J Solid State Circuits 50:344–359CrossRefGoogle Scholar
  18. 18.
    Tan J, Liew W, Heng C, Lian Y (2014) A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC. IEEE Trans Biomed Circuits Syst 8:497–509CrossRefGoogle Scholar
  19. 19.
    Kassiri H, Bagheri A, Soltani N et al (2016) Battery-less tri-band-radio neuro-monitor and responsive neurostimulator for diagnostics and treatment of neurological disorders. IEEE J Solid State Circuits 51:1274–1289CrossRefGoogle Scholar
  20. 20.
    Kiani M, Ghovanloo M (2013) A 20-Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission. IEEE Trans Circuits Syst Express Briefs 60:382–386CrossRefGoogle Scholar
  21. 21.
    Bourdel S, Bachelet Y, Gaubert J et al (2010) A 9-pJ/pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1–10.6-GHz FCC band. IEEE Trans Microwave Theory Tech 58:65–73CrossRefGoogle Scholar
  22. 22.
    Mirbozorgi SA, Bahrami H, Sawan M et al (2016) A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants. IEEE Trans Biomed Circuits Syst 10:643–653CrossRefGoogle Scholar
  23. 23.
    Mercier PP, Daly DC, Chandrakasan AP (2009) An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers. IEEE J Solid State Circuits 44:1679–1688CrossRefGoogle Scholar
  24. 24.
    Hajimiri A, Lee TH (1999) Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits 34:717–724CrossRefGoogle Scholar
  25. 25.
    Ham D, Hajimiri A (2001) Concepts and methods in optimization of integrated LC VCOs. IEEE J Solid State Circuits 36:896–909CrossRefGoogle Scholar
  26. 26.
    Jung J, Zhu S, Liu P et al (2010) 22-pJ/bit energy-efficient 2.4-GHz implantable OOK transmitter for wireless biotelemetry systems: in vitro experiments using rat skin-mimic. IEEE Trans Microwave Theory Tech 58:4102–4111Google Scholar
  27. 27.
    Smith G (1971) Radiation efficiency of electrically small multiturn loop antennas used in upper atmosphere propagation experiments. In: 1971 Antennas and Propagation Society International Symposium, pp 113–116Google Scholar
  28. 28.
    Smith G (1972) Radiation efficiency of electrically small multiturn loop antennas. IEEE Trans Antennas Propag 20:656–657CrossRefGoogle Scholar
  29. 29.
    Federal Communications Commission (2002) First report and order regarding ultra-wideband transmission systemsGoogle Scholar
  30. 30.
    Lin Y, Park S, Chen X et al (2018) 4.32-pJ/b, overlap-free, feedforward edge-combiner-based ultra-wideband transmitter for high-channel-count neural recording. IEEE Microwave Wireless Compon Lett 28:52–54CrossRefGoogle Scholar
  31. 31.
    Mir-Moghtadaei SV, Fotowat-Ahmady A, Nezhad AZ, Serdijn WA (2014) A 90 nm-CMOS IR-UWB BPSK transmitter with spectrum tunability to improve peaceful UWB-narrowband coexistence. IEEE Trans Circuits Syst Regul Pap 61:1836–1848CrossRefGoogle Scholar
  32. 32.
    Kim N, Rabaey JM (2016) A high data-rate energy-efficient triple-channel UWB-based cognitive radio. IEEE J Solid State Circuits 51:809–820CrossRefGoogle Scholar
  33. 33.
    Bahrami H, Mirbozorgi SA, Ameli R et al (2016) Flexible, polarization-diverse UWB antennas for implantable neural recording systems. IEEE Trans Biomed Circuits Syst 10:38–48CrossRefGoogle Scholar
  34. 34.
    Craninckx J, Steyaert M (1995) Low-noise voltage-controlled oscillators using enhanced LC-tanks. IEEE Trans Circuits Syst II Analog Digit Signal Process 42:794–804CrossRefGoogle Scholar
  35. 35.
    Lu L-H, Hsieh H-H, Liao Y-T (2006) A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Trans Microwave Theory Tech 54:3462–3468CrossRefGoogle Scholar
  36. 36.
    Crepaldi M, Angotzi GN, Maviglia A et al (2018) A 5 pJ/pulse at 1-Gpps pulsed transmitter based on asynchronous logic master–slave PLL synthesis. IEEE Trans Circuits Syst Regul Pap 65:1096–1109CrossRefGoogle Scholar
  37. 37.
    Streel G de, Stas F, Gurné T et al (2017) SleepTalker: a ULV 802.15.4a IR-UWB transmitter SoC in 28-nm FDSOI achieving 14 pJ/b at 27 Mb/s with channel selection based on adaptive FBB and digitally programmable pulse shaping. IEEE J Solid State Circuits 52:1163–1177CrossRefGoogle Scholar
  38. 38.
    Gunturi P, Emanetoglu NW, Kotecki DE (2017) A 250-Mb/s data rate IR-UWB transmitter using current-reused technique. IEEE Trans Microwave Theory Tech 65:4255–4265CrossRefGoogle Scholar
  39. 39.
    Ko J, Gharpurey R (2016) A pulsed UWB transceiver in 65 nm CMOS with four-element beamforming for 1 Gbps meter-range WPAN applications. IEEE J Solid State Circuits 51:1177–1187CrossRefGoogle Scholar
  40. 40.
    Ebrazeh A, Mohseni P (2015) 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link. IEEE Trans Biomed Circuits Syst 9:362–369CrossRefGoogle Scholar
  41. 41.
    Na K, Jang H, Ma H et al (2015) A 200-Mb/s data rate 3.1–4.8-GHz IR-UWB all-digital pulse generator with DB-BPSK modulation. IEEE Trans Circuits Syst Express Briefs 62:1184–1188CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kerim Türe
    • 1
  • Catherine Dehollain
    • 1
  • Franco Maloberti
    • 2
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of PaviaPaviaItaly

Personalised recommendations