• Kerim Türe
  • Catherine Dehollain
  • Franco Maloberti
Part of the Analog Circuits and Signal Processing book series (ACSP)


A neurological disorder is a chronic discomfort that affects many people throughout the world. The major form of treatment is long-term drug therapy, and surgery is an alternative for patients who do not respond to drug treatment when the cause is limited to a region. Continuous monitoring of neural activity is commonly used for the diagnosis of abnormal zones. Thanks to the advances in electronics, sensor systems, and fabrication methodologies, this book proposes an entirely implantable wireless neural monitoring system which eliminates the wires and possible complications due to them. This chapter presents the motivation of a wireless implantable neural recording system. It describes the challenges while removing the wires going from intracranial sensors to an external device outside of the body.


Analog-to-digital converter (ADC) Biomedical packing Brain–machine interface (BMI) Cerebrospinal fluid (CSF) Data communication Data rate Electrocorticography (ECoG) Electroencephalogram (EEG) Epilepsy Implantable system Intracranial EEG (iEEG) Intracranial recording Local field potentials (LFP) Neurological disorder Macro-electrode Micro-electrode Miniaturization Radio frequency (RF) Spike recording Temperature elevation 


  1. 1.
    Capogrosso M, Milekovic T, Borton D et al (2016) A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539:284–288CrossRefGoogle Scholar
  2. 2.
    Epilepsy. In: World Health Organization. Accessed 22 Oct 2018
  3. 3.
    Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342: 314–319CrossRefGoogle Scholar
  4. 4.
    Berkovic SF, McIntosh AM, Kalnins RM et al (1995) Preoperative MRI predicts outcome of temporal lobectomy: an actuarial analysis. Neurology 45:1358–1363CrossRefGoogle Scholar
  5. 5.
    Webster JG (2009) Medical instrumentation: application and design, 4th edn. Wiley, HobokenGoogle Scholar
  6. 6.
    Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14:720–726CrossRefGoogle Scholar
  7. 7.
    Najafi K, Wise KD (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid State Circuits 21:1035–1044CrossRefGoogle Scholar
  8. 8.
    Spencer D, Nguyen DK, Sivaraju A (2015) Invasive EEG in presurgical evaluation of epilepsy. In: The treatment of epilepsy. Wiley-Blackwell, Hoboken, pp 733–755CrossRefGoogle Scholar
  9. 9.
    Nair DR, Burgess R, McIntyre CC, Lüders H (2008) Chronic subdural electrodes in the management of epilepsy. Clin Neurophysiol 119:11–28CrossRefGoogle Scholar
  10. 10.
    Thakor NV (2013) Translating the brain-machine interface. Sci Transl Med 5:210ps17CrossRefGoogle Scholar
  11. 11.
    Engel J, Pedley TA, Aicardi J (2008) Epilepsy: a comprehensive textbook. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  12. 12.
    Bingaman WE, Bulacio J (2014) Placement of subdural grids in pediatric patients: technique and results. Childs Nerv Syst 30:1897–1904CrossRefGoogle Scholar
  13. 13.
    Stead M, Bower M, Brinkmann BH et al (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133:2789–2797CrossRefGoogle Scholar
  14. 14.
    Van Gompel JJ, Worrell GA, Bell ML et al (2008) Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery 63:498–505; discussion 505–506CrossRefGoogle Scholar
  15. 15.
    Fountas KN (2011) Implanted subdural electrodes: safety issues and complication avoidance. Neurosurg Clin N Am 22:519–531, viiGoogle Scholar
  16. 16.
    Akin T, Najafi K, Bradley RM (1998) A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode. IEEE J Solid State Circuits 33:109–118CrossRefGoogle Scholar
  17. 17.
    Bonfanti A, Ceravolo M, Zambra G et al (2010) A multi-channel low-power IC for neural spike recording with data compression and narrowband 400-MHz MC-FSK wireless transmission. In: 2010 Proceedings of ESSCIRC, pp 330–333Google Scholar
  18. 18.
    Lee SB, Lee H, Kiani M, et al (2010) An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans Biomed Circuits Syst 4:360–371CrossRefGoogle Scholar
  19. 19.
    Abdelhalim K, Kokarovtseva L, Velazquez JLP, Genov R (2013) 915-MHz FSK/OOK wireless neural recording SoC with 64 mixed-signal FIR filters. IEEE J Solid State Circuits 48:2478–2493CrossRefGoogle Scholar
  20. 20.
    Gao H, Walker RM, Nuyujukian P, et al (2012) HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J Solid State Circuits 47:1043–1055CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kerim Türe
    • 1
  • Catherine Dehollain
    • 1
  • Franco Maloberti
    • 2
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.University of PaviaPaviaItaly

Personalised recommendations