Advertisement

On the Hilbert Function of Four-Generated Numerical Semigroup Rings

  • Anna OnetoEmail author
  • Grazia Tamone
Chapter
  • 39 Downloads
Part of the Springer INdAM Series book series (SINDAMS, volume 40)

Abstract

In this article we study the Hilbert function HR of one-dimensional semigroup rings R = k[[S]], with embedding dimension four over an infinite field k. Let S =< e, n2, n3, n4 >  and let M = S ∖{0}. Consider the Apéry set of S with respect to the multiplicity e and its subsets Ah = {s ∈ Apéry(S) | s ∈ hM ∖ (h + 1)M}, h ≥ 2. Further let D2 ⊆{n3, n4} be the set of generators with torsion order 1. We prove that HR is non-decreasing at level ≤ 3 and that HR is non decreasing in each of the following cases: if A2 has cardinality ≤ 4, if A3 has cardinality ≤ 3, if A4 = ∅, if D2 has cardinality 2, if S has multiplicity ≤ 13.

Keywords

Numerical semigroup Hilbert function Apéry set 

Mathematics Subject Classification

Primary: 13H10; Secondary: 14H20 

Notes

Acknowledgements

This work is supported by the National Group of Algebraic and Geometric Structures and their Applications (GNSAGA)-INDAM—Italy.

References

  1. 1.
    Arslan, F., Mete P.: Hilbert functions of Gorenstein monomial curves. Proc. Am. Math. Soc. 135(7), 1993–2002 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arslan, F., Mete, P., Sahin, M.: Gluing and Hilbert functions of monomial curves. Proc. Am. Math. Soc. 137, 2225–2232 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cortadellas Benitez, T., Jafari, R., Zarzuela Armengou, S.: On the Apéry set of monomial curves. Semigroup Forum 86(2), 289–320 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D’Anna, M., Di Marca, M., Micale, V.: On the Hilbert function of the tangent cone of a monomial curve. Semigroup Forum 91(3), 718–730 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Delgado, M., García-Sánchez, P.A., Morais, J.: NumericalSgps. A GAP package for numerical semigroups, Version 1.1.5 (2017). (Refereed GAP package, https://gap-packages.github.io/numericalsgps)
  6. 6.
    Elias, J.: The conjecture of Sally on the Hilbert function for curve singularities. J. Algebra 160(1), 42–49 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Elias, J.: On the depth of the tangent cone and the growth of the Hilbert function. Trans. Am. Math. Soc. 351(10), 4027–4042 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    García, A.: Cohen-Macaulayness of the associated graded ring of a semigroup ring. Commun. Algebra 10(4), 393–415 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gupta, S.K., Roberts, L.G.: Cartesian squares of ordinary singularities of curves. Commun. Algebra 11(2), 127–182 (1983)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jafari, R., Zarzuela Armengou, S.: On monomial curves obtained by gluing. Semigroup Forum 88(2), 397–416 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Molinelli, S., Tamone, G.: On the Hilbert function of certain rings of monomial curves. J. Pure Appl. Algebra 101(2), 191–206 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Molinelli, S., Tamone, G.: On the Hilbert function of certain non Cohen-Macaulay one-dimensional rings. Rocky Mountain J. Math. 29(1), 271–300 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Oneto, A., Tamone, G.: On semigroup rings with decreasing Hilbert function. J. Algebra 489, 373–398 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oneto, A., Strazzanti, F., Tamone, G.: One-dimensional Gorenstein local rings with decreasing Hilbert function. J. Algebra 489, 91–114 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Orecchia, F.: One dimensional local rings with reduced associated ring and their Hilbert function. Manuscripta Math. 32(3–4), 391–405 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Patil, D.P., Tamone, G.: CM defect and Hilbert functions of monomial curves. J. Pure Appl. Algebra 215, 1539–1551 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Roberts, L.G.: Ordinary singularities with decreasing Hilbert function. Can. J. Math. 34, 169–180 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rossi, M.E., Valla, G.: Cohen-Macaulay local rings of embedding dimension e + d − 3. Proc. Lond. Math. Soc. 80, 107–126 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tamone, G.: On the Hilbert function of some non Cohen-Macaulay graded rings. Commun. Algebra 26(12), 4221–4231 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.DIMAUniversity of GenovaGenovaItaly

Personalised recommendations